skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting Biological Gender and Intelligence from fMRI via Dynamic Functional Connectivity
Recent works have explored the neuronal functional differences in biological gender and intelligence using static functional connectivity. Objective: This paper explores the predictive capability of dynamic functional connectivity extracted from functional magnetic resonance imaging (fMRI) of the human brain. Methods: Several state-of-the-art features extracted from static functional connectivity of the brain are employed to predict biological gender and intelligence using publicly available Human Connectome Project (HCP) database. Next, a novel tensor parallel factor (PARAFAC) decomposition model is proposed to decompose sequence of dynamic connectivity matrices into common connectivity components that are orthonormal to each other, common time-courses, and corresponding distinct subject-wise weights. The subject-wise loading of the components are employed to predict biological gender and intelligence using a random forest classifier (respectively,regressor) using5-foldcross-validation. Results:The results demonstrate that dynamic functional connectivity can indeed classify biological gender with a high accuracy (0.94, where male identification accuracy was 0.87 and female identification accuracy was 0.97). It can also predict intelligence with less normalized mean square error (0.139 for fluid intelligence and 0.031 for fluid ability metrics) compared with other functional connectivity measures (the nearest mean square error were 0.147 and 0.037 for fluid intelligence and fluid ability metrics, respectively using static connectivity approaches). Conclusion: Our work is an important milestone for the understanding of non-stationary behavior of hemodynamic blood-oxygen level dependent (BOLD) signal in brain and how they are associated with biological gender and intelligence. Significance: The paper demonstrates that dynamic behavior of brain can contribute substantially towards forming a fingerprint of biological gender and intelligence.  more » « less
Award ID(s):
1954749
PAR ID:
10210734
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Biomedical Engineering
ISSN:
0018-9294
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Prior papers have explored the functional connectivity changes for patients suffering from major depressive disorder (MDD). This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments. This paper investigates various static and dynamic connectivity measures extracted from resting-state fMRI for assisting with MDD diagnosis. First, absolute Pearson correlation matrices from 85 brain regions are computed and they are used to calculate static features for predicting MDD. A predictive sub-network extracted using sub-graph entropy classifies adolescent MDD vs. typical healthy controls with high accuracy, sensitivity and specificity. Next, approaches utilizing dynamic connectivity are employed to extract tensor based, independent component based and principal component based subject specific attributes. Finally, features from static and dynamic approaches are combined to create a feature vector for classification. A leave-one-out cross-validation method is used for the final predictor performance. Out of 49 adolescents with MDD and 33 matched healthy controls, a support vector machine (SVM) classifier using a radial basis function (RBF) kernel using differential sub-graph entropy combined with dynamic connectivity features classifies MDD vs. healthy controls with an accuracy of 0.82 for leave-one-out cross-validation. This classifier has specificity and sensitivity of 0.79 and 0.84, respectively. This performance demonstrates the utility of MRI based diagnosis of psychiatric disorders like MDD using a combination of static and dynamic functional connectivity features of the brain. 
    more » « less
  2. Hyperdimensional (HD) computing is a brain-inspired form of computing based on the manipulation of high-dimensional vectors. Offering robust data representation and relatively fast learning, HD computing is a promising candidate for energy-efficient classification of biological signals. This paper describes the application of HD computing-based machine learning to the classification of biological gender from resting-state and task functional magnetic resonance imaging (fMRI) from the publicly available Human Connectome Project (HCP). The developed HD algorithm derives predictive features through mean dynamic functional connectivity (dFC) analysis. Record encoding is employed to map features onto hyperdimensional space. Utilizing adaptive retraining techniques, the HD computing-based classifier achieves an average biological gender classification accuracy of 87%, as compared to 84% achieved by edge entropy measure. 
    more » « less
  3. Sex differences in brain structure significantly influence traumatic brain injury (TBI) onset and progression, yet this area is understudied. Herein, we developed sex-specific brain anatomical (macroscale) and axonal tract (mesoscale) templates and explored the sex variations at subject level using a set of T1-MRI (609 males, 721 females) and DTI images (506 males, 594 females). The FreeSurfer, ANTs, and DSI-Studio packages were used. We investigated overall/regional volumes, DTI metrics (including fractional anisotropy (FA), mean diffusivity, and radial diffusivity), and connectivity matrix across 23 brain regions. The brain connectome was derived by multiplying the fiber tract counts and the FA values within the connecting tracts, quantifying the connection strength within each pair of regions. Our subject-wise analysis revealed significant sex based differences (Mann-Whitney p-values < 0.05) across most studied regions for all parameters. The largest sex differences in brain connections were observed in five regions: corpus callosum and right/left cortex and cerebral white matter, all stronger in females. Brain regions were typically larger in males, yet females had higher fractional volumes in the majority of regions except for CSF and ventricles, known for their cushioning effect during head impacts. Additionally, the sex-specific templates better represented their targeted sex compared to opposite or mixed-sex populations as evaluated by root-mean-square-errors when comparing the DTI metrics and connectivity from the DTI templates against the median of subjects and deformation field in registering the subjects to the T1-MRI templates. Our findings highlight the necessity of sex-specific templates in accurate brain modeling and TBI research. 
    more » « less
  4. Introduction:Electroconvulsive therapy (ECT) remains one of the most effective approaches for treatment-resistant depressive episodes, despite the potential cognitive impairment associated with this treatment. As a potent stimulator of neuroplasticity, ECT might normalize aberrant depression-related brain function via the brain’s reconstruction by forming new neural connections. Multiple lines of evidence have demonstrated that functional connectivity (FC) changes are reliable indicators of antidepressant efficacy and cognitive changes from static and dynamic perspectives. However, no previous studies have directly ascertained whether and how different aspects of FC provide complementary information in terms of neuroimaging-based prediction of clinical outcomes. Methods:In this study, we implemented a fully automated independent component analysis framework to an ECT dataset with subjects (n = 50, age = 65.54 ± 8.92) randomized to three treatment amplitudes (600, 700, or 800 milliamperes [mA]). We extracted the static functional network connectivity (sFNC) and dynamic FNC (dFNC) features and employed a partial least square regression to build predictive models for antidepressant outcomes and cognitive changes. Results:We found that both antidepressant outcomes and memory changes can be robustly predicted by the changes in sFNC (permutation test p < 5.0 × 10−3). More interestingly, by adding dFNC information, the model achieved higher accuracy for predicting changes in the Hamilton Depression Rating Scale 24-item (HDRS24, t = 9.6434, p = 1.5 × 10−21). The predictive maps of clinical outcomes show a weakly negative correlation, indicating that the ECT-induced antidepressant outcomes and cognitive changes might be associated with different functional brain neuroplasticity. Discussion:The overall results reveal that dynamic FC is not redundant but reflects mechanisms of ECT that cannot be captured by its static counterpart, especially for the prediction of antidepressant efficacy. Tracking the predictive signatures of static and dynamic FC will help maximize antidepressant outcomes and cognitive safety with individualized ECT dosing. 
    more » « less
  5. This paper investigates the effect of filtering (or modulating) the functional magnetic resonance imaging (fMRI) time-series on intelligence metrics predicted using dynamic functional connectivity (dFC). Thirteen brain regions that have highest correlation with intelligence are selected and their corresponding time-series are filtered. Using filtered time-series, the modified intelligence metrics are predicted. This experiment investigates whether modulating the time-series of one or two regions of the brain will increase or decrease the fluid ability and fluid intelligence among healthy humans. Two sets of experiments are performed. In the first case, each of the thirteen regions is separately filtered using four different digital filters with passbands: i) 0 - 0.25π, ii) 0.25π - 0.5π, iii) 0.5π - 0.75π, and iv) 0.75π – π, respectively. In the second case, two of the thirteen regions are filtered simultaneously using a low-pass filter of passband 0 - 0.25π. In both cases, the predicted intelligence declined for 45-65% of the subjects after filtering in comparison with the ground truths. In the first case, the low-pass filtering process had the highest predicted intelligence among the four filters. In the second case, it was noticed that the filtering of two regions simultaneously resulted in a higher prediction of intelligence for over 80% of the subjects compared to low-pass filtering of a single region. 
    more » « less