skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions
Abstract Observations of high ferric iron content in diamond garnet inclusions and mantle plume melts suggest a highly heterogeneous distribution of ferric iron in the mantle. Recycling of oxidized materials such as carbonates from Earth’s surface by subduction could explain the observed variations. Here we present high-pressure high-temperature multi-anvil experiments to determine the redox reactions between calcium-, magnesium-, or iron-carbonate and ferrous iron-bearing silicate mineral (garnet or fayalite) at conditions representative of subduction zones with intermediate thermal structures. We show that both garnet and fayalite can be oxidized to ferric iron-rich garnets accompanied by reduction of calcium carbonate to form graphite. The ferric iron content in the synthetic garnets increases with increasing pressure, and is correlated with the Ca content in the garnets. We suggest that recycled sedimentary calcium carbonate could influence the evolution of the mantle oxidation state by efficiently increasing the ferric iron content in the deep upper mantle.  more » « less
Award ID(s):
1619868 1447311
PAR ID:
10214739
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
2
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Garnet is an important mineral phase in the upper mantle as it is both a key component in bulk mantle rocks, and a primary phase at high-pressure within subducted basalt. Here, we focus on the strength of garnet and the texture that develops within garnet during accommodation of differential deformational strain. We use X-ray diffraction in a radial geometry to analyze texture development in situ in three garnet compositions under pressure at 300 K: a natural garnet (Prp60Alm37) to 30 GPa, and two synthetic majorite-bearing compositions (Prp59Maj41 and Prp42Maj58) to 44 GPa. All three garnets develop a modest (100) texture at elevated pressure under axial compression. Elasto-viscoplastic self-consistent (EVPSC) modeling suggests that two slip systems are active in the three garnet compositions at all pressures studied: {110}<1-21 11> and {001}<110>. We determine a flow strength of ~5 GPa at pressures between 10 to 15 GPa for all three garnets; these values are higher than previously measured yield strengths measured on natural and majoritic garnets. Strengths calculated using the experimental lattice strain differ from the strength generated from those calculated using EVPSC. Prp67Alm33, Prp59Maj41 and Prp42Maj58 are of comparable strength to each other at room temperature, which indicates that majorite substitution does not greatly affect the strength of garnets. Additionally, all three garnets are of similar strength as lower mantle phases such as bridgmanite and ferropericlase, suggesting that garnet may not be notably stronger than the surrounding lower mantle/deep upper mantle phases at the base of the upper mantle. 
    more » « less
  2. Abstract Incorporation of ferric iron in mantle silicates stabilizes different crystal structures and changes phase transition conditions, thus impacting seismic wave speeds and discontinuities. In MgSiO3-Fe2O3 mixtures, recent experiments indicate the coexistence of fully oxidized iron-rich (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 with Fe-poor silicate (wadsleyite or bridgmanite) and stishovite at 15 to 27 GPa and 1773 to 2000 K, conditions relevant to subducted lithosphere in the Earth’s transition zone and uppermost lower mantle. X-ray diffraction measurements show that (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 recovered from these conditions adopts the R3c LiNbO3-type structure, which transforms to the bridgmanite structure again between 18.3 GPa and 24.7 GPa at 300 K. Diffraction observations are used to obtain the equation of state of the LiNbO3-type phase up to 18.3 GPa. These observations combined with multi-anvil experiments suggest that the stable phase of (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 is bridgmanite at 15-27 GPa, which transforms on decompression to LiNbO3-type structure. Our calculation revealed that ordering of the ferric ion reduces the kinetic energy barrier of the transition between (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 structure and bridgmanite relative to the MgSiO3 akimotoite-bridgmanite system. Dense Fe3+-rich bridgmanite structure is thus stable at substantially shallower depths than MgSiO3 bridgmanite and would promote subduction. 
    more » « less
  3. Examination of a global suite of eclogite-facies metabasites and metasediments suggests that eclogites tend to exhibit reduced mineral assemblages relative to their protoliths. High-pressure rocks tend to lack sulfides and Fe3+-bearing oxides in the eclogite facies. We suggest that eclogite-facies mineral assemblages are consistent with prograde reactions that balance the oxidation of S2- or S- to S6+ by reducing Fe3+in silicates or oxides: (1)8Fe3+Si O (OH) +S2-=8Fe2+Si O +SO 2-+(H O) abc de42f The oxidation of one mole of S2-or S-is balanced by the reduction of 7 to 8 moles of Fe3+, and typical S concentrations in the oceanic crust are capable of fully reducing the entire Fe3+ budget of metabasites. As most eclogite facies rocks do not preserve peak metamorphic sulfides, petrographic evidence for prograde S oxidation reactions are cryptic; however, textures associated with sulfate reduction in response to influx of external fluids are common (reaction 1 in reverse). These reactions produce Fe3+-rich phases and are observed in both metasedimentary and metabasic rocks across a range of retrograde P-T paths (blueschist to granulite facies). For example, high-P calc- schists exhibit reaction textures that suggest the breakdown of garnet and white mica to produce pyrite + chalcopyrite + epidote + biotite + magnetite. Our thermodynamic models of aS2 and aO2 at subduction zone P-T conditions suggest assemblages of this type are indicative of aO2 0.7 to 4.5 log units above the quartz-fayalite-magnetite buffer. In rehydrated eclogites, pyrite is commonly associated with the breakdown of garnet + omphacite to amphibole + pyrite. Additionally, direct precipitation of sulfide from sulfate is observed in two samples: 1) The retrograde assemblage pyrite + ilmenite + gypsum occurs in one retrogressed metagabbroic eclogite, and 2) Coronas of secondary pyrite + barite + gypsum enclose early retrograde pyrite in a retrogressed garnet blueschist. In many eclogites, S- is reduced to S2- as pyrite is replaced by pyrrhotite, chalcopyrite, and mixed valence Co-Ni sulfides. These reactions are balanced by oxidation of divalent to trivalent Fe-Co-Ni. Reactions of this type are consistent with increasing aS2 during retrograde metamorphism. Thus, ample evidence exists for oxidized S-bearing fluids released from subducting slabs. 
    more » « less
  4. SUMMARY We expand the scope of HeFESTo by encompassing the rich physics of iron in the mantle, including the existence of multiple valence and spin states. In our previous papers, we considered iron only in its most common state in the mantle: the high-spin divalent (ferrous) cation. We now add ferric iron end-members to six phases, as well as the three phases of native iron. We also add low-spin states of ferrous and ferric iron and capture the behaviour of the high-spin to low-spin transition. Consideration of the multi-state nature of iron, unique among the major elements, leads to developments of our theory, including generalization of the chemical potential to account for the possibility of multiple distinguishable states of iron co-existing on a single crystallographic site, the effect of the high-spin to low-spin transition on seismic wave velocities in multiphase systems, and computation of oxygen fugacity. Consideration of ferric iron also motivates the addition of the chromia component to several phases, so that we now consider the set of components: Ca, Na, Fe, Mg, Al, Si, O and Cr (CNFMASO+Cr). We present the results of a new global inversion of mineral properties and compare our results to experimental observations over the entire pressure–temperature range of the mantle and over a wide range of oxygen fugacity. Applications of our method illustrate how it might be used to better understand the seismic structure, dynamics and oxygen fugacity of the mantle. 
    more » « less
  5. Abstract The dehydration and decarbonation in the subducting slab are intricately related and the knowledge of the physical properties of the resulting C–H–O fluid is crucial to interpret the petrological, geochemical, and geophysical processes associated with subduction zones. In this study, we investigate the C–H–O fluid released during the progressive devolatilization of carbonate-bearing serpentine-polymorph chrysotile, with in situ electrical conductivity measurements at high pressures and temperatures. The C–H–O fluid produced by carbonated chrysotile exhibits high electrical conductivity compared to carbon-free aqueous fluids and can be an excellent indicator of the migration of carbon in subduction zones. The crystallization of diamond and graphite indicates that the oxidized C–H–O fluids are responsible for the recycling of carbon in the wedge mantle. The carbonate and chrysotile bearing assemblages stabilize dolomite during the devolatilization process. This unique dolomite forming mechanism in chrysotile in subduction slabs may facilitate the transport of carbon into the deep mantle. 
    more » « less