skip to main content


Title: Dependence of Superintensity of Tropical Cyclones on SST in Axisymmetric Numerical Simulations
Abstract This study revisits the superintensity of tropical cyclones (TCs), which is defined as the excess maximum surface wind speed normalized by the corresponding theoretical maximum potential intensity (MPI), based on ensemble axisymmetric numerical simulations, with the focus on the dependence of superintensity on the prescribed sea surface temperature (SST) and the initial environmental atmospheric sounding. Results show a robust decrease of superintensity with increasing SST regardless of being in experiments with an SST-independent initial atmospheric sounding or in those with the SST-dependent initial atmospheric soundings as in nature sorted for the western North Pacific and the North Atlantic. It is found that the increase in either convective activity (and thus diabatic heating) in the TC outer region or theoretical MPI or both with increasing SST could reduce the superintensity. For a given SST-independent initial atmospheric sounding, the strength of convective activity in the TC outer region increases rapidly with increasing SST due to the rapidly increasing air–sea thermodynamic disequilibrium (and thus potential convective instability) with increasing SST. As a result, the decrease of superintensity with increasing SST in the SST-independent sounding experiments is dominated by the increasing convective activity in the TC outer region and is much larger than that in the SST-dependent sounding experiments, and the TC intensity becomes sub-MPI at relatively high SSTs in the former. Due to the marginal increasing tendency of convective activity in the TC outer region, the decrease of superintensity in the latter is dominated by the increase in theoretical MPI with increasing SST.  more » « less
Award ID(s):
1834300
NSF-PAR ID:
10216236
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Weather Review
Volume:
148
Issue:
12
ISSN:
0027-0644
Page Range / eLocation ID:
4767 to 4781
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Contributions of atmospheric factors to the variability of the calculated theoretical maximum potential intensity (MPI) of tropical cyclones (TCs) over the North Atlantic are explored using the 6‐hourly atmospheric reanalysis and TC best track data from 1980 to 2015. The results show that for a given sea surface temperature (SST), the calculated theoretical MPI between the medians of top 10% and bottom 10% samples can vary by as large as 10–15 m/s, which accounts for 20–25% of the median of the MPI. It is shown that the drier (moister) and colder (warmer) environment favors higher (lower) MPI, and the TC‐MPI is more sensitive to atmospheric temperature at lower SSTs but more sensitive to atmospheric humidity at higher SSTs. Results from sensitivity experiments show that the tropospheric temperature and humidity profiles and the outflow layer temperature are all responsible for the MPI variability, but their relative importance vary with SST. The atmospheric humidity accounts for 12–13 (7–11) m/s at SSTs over (below) 28 °C, the tropospheric temperature accounts for about 7–12 (5–6) m/s at SSTs below (above) 28 °C, and the outflow temperature accounts for 7–8 m/s almost independent of SST. These results strongly suggest that the modulation of MPI by synoptic variability needs to be considered when MPI is calculated and used as a predictor/parameter in operational TC intensity prediction schemes, especially for strong TCs. Some other implications of the results are also discussed.

     
    more » « less
  2. Abstract

    Several key issues in the simple time-dependent theories of tropical cyclone (TC) intensification developed in recent years remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature (SST) under the eyewall and the definition of environmental conditions, such as the boundary layer enthalpy in TC environment and the TC outflow-layer temperature. In this study, some refinements to the most recent time-dependent theory of TC intensification have been accomplished to resolve those issues. The first is the construction of a functional relationship between the surface pressure under the eyewall and the TC intensity, which is derived using the cyclostrophic wind balance and calibrated using full-physics axisymmetric model simulations. The second is the definition of TC environment that explicitly includes the air–sea temperature difference. The third is the TC outflow-layer temperature parameterized as a linear function of SST based on global reanalysis data. With these refinements, the updated time-dependent theory becomes self-contained and can give both the intensity-dependent TC intensification rate (IR) and the maximum potential intensity (MPI) under given environmental thermodynamic conditions. It is shown that the pressure dependence of saturation enthalpy at SST can lead to an increase in the TC MPI and IR by about half of that induced by dissipative heating due to surface friction. Results also show that both MPI and IR increase with increasing SST, surface enthalpy exchange coefficient, environmental air–sea temperature difference, and decreasing environmental boundary layer relative humidity, but the maximum IR is insensitive to surface drag coefficient.

    Significance Statement

    A new advancement in the recent decade is the development of simple time-dependent theories of tropical cyclone (TC) intensification, which can provide quantitative understanding of TC intensity change. However, several key issues in these simple time-dependent theories remain, including the lack of a closure for the pressure dependence of saturation enthalpy at sea surface temperature under the eyewall and the definition of environmental conditions. These are resolved in this study with several refinements, which make the most recent time-dependent theory of TC intensification self-contained and practical.

     
    more » « less
  3. Abstract In a recent study by Wang et al. that introduced a dynamical efficiency to the intensification potential of a tropical cyclone (TC) system, a simplified energetically based dynamical system (EBDS) model was shown to be able to capture the intensity dependence of TC potential intensification rate (PIR) in both idealized numerical simulations and observations. Although the EBDS model can capture the intensity dependence of TC intensification as in observations, a detailed evaluation has not yet been done. This study provides an evaluation of the EBDS model in reproducing the intensity-dependent feature of the observed TC PIR based on the best track data for TCs over the North Atlantic and central, eastern, and western North Pacific during 1982–2019. Results show that the theoretical PIR estimated by the EBDS model can capture basic features of the observed PIR reasonably well. The TC PIR in the best track data increases with increasing relative TC intensity [intensity normalized by its corresponding maximum potential intensity (MPI)] and reaches a maximum at an intermediate relative intensity around 0.6, and then decreases with increasing relative intensity to zero as the TC approaches its MPI, as in idealized numerical simulations. Results also show that the PIR for a given relative intensity increases with the increasing MPI and thus increasing sea surface temperature, which is also consistent with the theoretical PIR implied by the EBDS model. In addition, future directions to include environmental effects and make the EBDS model applicable to predict intensity change of real TCs are also discussed. 
    more » « less
  4. null (Ed.)
    Abstract Earlier studies have proposed many semiempirical relations between climate and tropical cyclone (TC) activity. To explore these relations, this study conducts idealized aquaplanet experiments using both symmetric and asymmetric sea surface temperature (SST) forcings. With zonally symmetric SST forcings that have a maximum at 10°N, reducing meridional SST gradients around an Earth-like reference state leads to a weakening and southward displacement of the intertropical convergence zone. With nearly flat meridional gradients, warm-hemisphere TC numbers increase by nearly 100 times due particularly to elevated high-latitude TC activity. Reduced meridional SST gradients contribute to a poleward expansion of the tropics, which is associated with a poleward migration of the latitudes where TCs form or reach their lifetime maximum intensity. However, these changes cannot be simply attributed to the poleward expansion of Hadley circulation. Introducing zonally asymmetric SST forcings tends to decrease the global TC number. Regional SST warming—prescribed with or without SST cooling at other longitudes—affects local TC activity but does not necessarily increase TC genesis. While regional warming generally suppresses TC activity in remote regions with relatively cold SSTs, one experiment shows a surprisingly large increase of TC genesis. This increase of TC genesis over relatively cold SSTs is related to local tropospheric cooling that reduces static stability near 15°N and vertical wind shear around 25°N. Modeling results are discussed with scaling analyses and have implications for the application of the “convective quasi-equilibrium and weak temperature gradient” framework. 
    more » « less
  5. Abstract Previous studies have demonstrated the contribution of dissipative heating (DH) to the maximum potential intensity (MPI) of tropical cyclones (TCs). Since DH is a function of near-surface wind speed and thus TC intensity, a natural question arises as to whether DH contributes to the intensity dependence of TC potential intensification rate (PIR). To address this issue, an attempt has been made to include DH in a recently developed time-dependent theory of TC intensification. With this addition, the theory predicts a shift of the maximum PIR toward the higher intensity side, which is consistent with the intensity dependence of TC intensification rate in observed strong TCs. Since the theory without DH predicts a dependence of TC PIR on the square of the MPI, the inclusion of DH results in an even higher PIR for strong TCs. Considering the projected increase in TC MPI under global warming, the theoretical work implies that as the climate continues to warm, TCs may intensify more rapidly. This may not only make the TC intensity forecasting more difficult, but also may increase the threats of TCs to the coastal populations if TCs intensify more rapidly just before they make landfall. Significance Statement Previous studies have demonstrated that dissipative heating (DH) can significantly contribute to the maximum potential intensity (MPI) that a tropical cyclone (TC) can achieve given favorable environmental thermodynamic conditions of the atmosphere and the underlying ocean. Here we show that because DH is a function of near-surface wind speed and thus TC intensity, DH can also significantly contribute to the intensity dependence of TC potential intensification rate (PIR). This has been demonstrated by introducing DH into a recently developed time-dependent theory of TC intensification. With DH the theory predicts a shift of the maximum PIR toward the higher intensity side as observed in strong TCs. Therefore, as the climate continues to warm, TCs may intensify more rapidly and become stronger. 
    more » « less