Significant advances for optical systems in terms of both performance and packaging are enabled by freeform optical components. Yet, surface form metrology for freeform optics remains a challenge. We developed and investigated a point-cloud cascade optical coherence tomography (C-OCT) technique to address this metrology challenge. The mathematical framework for the working principle of C-OCT is presented. A novel detection scheme is developed to enable high-speed measurements. Experimental results validate the C-OCT technique with the prototype setup demonstrating single-point precision of ±26 nm (∼λ/24 at the He-Ne wavelength), paving the way towards full surface measurements on freeform optical components.
more »
« less
Verification of cascade optical coherence tomography for freeform optics form metrology
Freeform optical components enable dramatic advances for optical systems in both performance and packaging. Surface form metrology of manufactured freeform optics remains a challenge and an active area of research. Towards addressing this challenge, we previously reported on a novel architecture, cascade optical coherence tomography (C-OCT), which was validated for its ability of high-precision sag measurement at a given point. Here, we demonstrate freeform surface measurements, enabled by the development of a custom optical-relay-based scanning mechanism and a unique high-speed rotation mechanism. Experimental results on a flat mirror demonstrate an RMS flatness of 14 nm (∼λ/44 at the He-Ne wavelength). Measurement on a freeform mirror is achieved with an RMS residual of 69 nm (∼λ/9). The system-level investigations and validation provide the groundwork for advancing C-OCT as a viable freeform metrology technique.
more »
« less
- PAR ID:
- 10216358
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 29
- Issue:
- 6
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 8542
- Size(s):
- Article No. 8542
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the implementation of an interferometric null test using a high-definition spatial light modulator (SLM) as a reconfigurable alternative to a computer-generated hologram. We detail the alignment process chain, including novel techniques using the SLM to project alignment fiducials on the test part. To validate the alignment protocol, we measure a mild off-axis conic with the SLM-based system and cross-validate with conventional interferometry within 30 nm root-mean-square (RMS) surface figure. Finally, we report the null test of a 65 mm clear aperture concave freeform with 91 μm peak-valley sag departure from the base sphere. The measured surface figure of the freeform is within 40 nm RMS compared to the measurement with a commercial metrology instrument.more » « less
-
Transverse translation-diverse phase retrieval (TTDPR), a ptychographic wavefront-sensing technique, is a viable method for optical surface metrology due to its relatively simple hardware requirements, flexibility, and high demonstrated accuracy in other fields. In TTDPR, a subaperture illumination pattern is scanned across an optic under test, and the reflected intensity is gathered on an array detector near focus. A nonlinear optimization algorithm is used to reconstruct the wavefront aberration at the test surface, from which we can solve for surface error, using intensity patterns from multiple scan positions. TTDPR is an advantageous method for aspheric and freeform metrology, because measurements can be performed without null optics. We report on a sensitivity analysis of TTDPR using simulations of a freeform concave mirror measurement. Simulations were performed to test TTDPR algorithmic performance as a function of various parameters, including detector SNR and position uncertainty of the illumination.more » « less
-
Precision glass molding is a viable process for the cost-effective volume production of freeform optics. Process development is complex, requiring iterative trials of mold manufacture and metrology, glass mold prototyping, metrology and functional testing. This paper describes the first iteration in the development of a process for an Alvarez lens for visible light. The challenges of this optic are extremely tight band-RMS tolerances on a freeform shape over a maximum clear aperture of 45 mm, a 16:1 aspect ratio and a freeform departure of 329 micrometers. A freeform glass mold for an Alvarez lens was manufactured by coordinated-axis diamond turning in a mold substrate using a custom tool error correction method. The results of prototype precision glass molding are also reported. Mold surfaces and molded optical surfaces are analyzed with scanning white light interferometry. A surface roughness of approximately 3 nm RMS is obtained for both the mold substrate and the glass optic with high-fidelity reproduction of micro-surface structure in the glass. These measurements also identify challenging areas, particularly the presence of mid-spatial frequency errors on the optic originating from the machine thermal control system. The form of the molds was also measured with a profilometer; however, the mold surface does not agree with the expected prescription with an overall deviation in form of approximately 10 μm. The machining process is expected to have sub-micrometer error and the sources of this discrepancy are still being determined. Metrology of the glass optics is currently in progress.more » « less
-
We report the simulation of an adaptive interferometric null test using a high-definition phase-only spatial light modulator (SLM) to measure form and mid spatial frequencies of a freeform mirror with a sag departure of 150 μm from its base sphere. A state-of-the-art commercial SLM is modeled as a reconfigurable phase computer generated hologram (CGH) that generates a nulling phase function with close to an order of magnitude higher amplitude than deformable mirrors. The theoretical uncertainty in form measurement arising from pixelation and phase quantization of the SLM is 50.62 nm RMS. The calibration requirements for hardware implementation are detailed. © 2019 Optical Society of America https://doi.org/10.1364/OL.44.002000more » « less
An official website of the United States government
