skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Composite In Situ Microphysical Analysis of All Spiral Vertical Profiles Executed within BAMEX and PECAN Mesoscale Convective Systems
Vertical profiles of temperature, relative humidity, cloud particle concentration, median mass dimension, and mass content were derived using instruments on the NOAA P-3 aircraft for 37 spiral ascents/descents flown within five mesoscale convective systems (MCSs) during the 2015 Plains Elevated Convection at Night (PECAN) project, and 16 spiral descents of the NOAA P-3 within 10 MCSs during the 2003 Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). The statistical distribution of thermodynamic and microphysical properties within these spirals is presented in context of three primary MCS regions—the transition zone (TZ), enhanced stratiform rain region (ESR), and the anvil region (AR)—allowing deductions concerning the relative importance and nature of microphysical processes in each region. Aggregation was ubiquitous across all MCS zones at subfreezing temperatures, where the degree of ambient subsaturation, if present, moderated the effectiveness of this process via sublimation. The predominately ice-supersaturated ESR experienced the least impact of sublimation on microphysical characteristics relative to the TZ and AR. Aggregation was most limited by sublimation in the ice-subsaturated AR, where total particle number and mass concentrations decreased most rapidly with increasing temperature. Sublimation cooling at the surface of ice particles in the TZ, the driest of the three regions, allowed ice to survive to temperatures as high as +6.8°C. Two spirals executed behind a frontal squall line exhibited a high incidence of pristine ice crystals, and notably different characteristics from most other spirals. Gradual meso- to synoptic-scale ascent in this region likely contributed to the observed differences.  more » « less
Award ID(s):
1841966
PAR ID:
10217434
Author(s) / Creator(s):
; ; ; ;
Editor(s):
van den Heever, S.
Date Published:
Journal Name:
Journal of the atmospheric sciences
Volume:
77
ISSN:
1520-0469
Page Range / eLocation ID:
2541-2565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study examines microphysical and thermodynamic characteristics of the 20 June 2015 mesoscale convective system (MCS) observed during the Plains Elevated Convection At Night (PECAN) experiment, specifically within the transition zone (TZ), enhanced stratiform rain region (ESR), anvil region, melting layer (ML), and the rear inflow jet (RIJ). Analyses are developed from airborne optical array probe data and multiple-Doppler wind and reflectivity syntheses using data from the airborne NOAA Tail Doppler Radar (TDR) and ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D) radars. Seven spiral ascents/descents of the NOAA P-3 aircraft were executed within various regions of the 20 June MCS. Aggregation modified by sublimation was observed in each MCS region, regardless of whether the sampling was within the RIJ. Sustained sublimation and evaporation of precipitation in subsaturated layers led to a trend of downward moistening across the ESR spirals, with greater degrees of subsaturation maintained when in the vicinity of the descending RIJ. In all cases where melting was observed, the ML acted as a prominent thermodynamic boundary, with differing rates of change in temperature and relative humidity above and below the ML. Two spiral profiles coincident with the rear inflow notch provided unique observations within the TZ and were interpreted in the context of similar observations from the 29 June 2003 Bow Echo and Mesoscale Convective Vortex Experiment MCS. There, sublimation cooling and enhanced descent within the RIJ allowed ice particles to survive to temperatures as warm as +6.8°C before completely sublimating/evaporating. 
    more » « less
  2. Abstract High Ice Water Content (HIWC) regions above tropical mesoscale convective systems are investigated using data from the second collaboration of the High Altitude Ice Crystals and High Ice Water Content projects (HAIC-HIWC) based in Cayenne, French Guiana in 2015. Observations from in-situ cloud probes on the French Falcon 20 determine the microphysical and thermodynamic properties of such regions. Data from a 2-D stereo probe and precipitation imaging probe show how statistical distributions of ice crystal mass median diameter ( MMD ), ice water content ( IWC ), and total number concentration ( N t ) for particles with maximum dimension ( D max ) > 55 μm vary with environmental conditions, temperature ( T ), and convective properties such as vertical velocity ( w ), MCS age, distance away from convective peak ( L ), and surface characteristics. IWC is significantly correlated with w , whereas MMD decreases and N t increases with decreasing T consistent with aggregation, sedimentation and vapor deposition processes at lower altitudes. MMD typically increases with IWC when IWC < 0.5 g m -3 , but decreases with IWC when IWC > 0.5 g m -3 for -15 °C ≤ T ≤ -5 °C. Trends also depend on environmental conditions, such as presence of convective updrafts that are the ice crystal source, MMD being larger in older MCSs consistent with aggregation and less injection of small crystals into anvils, and IWC s decrease with increasing L at lower T . The relationship between IWC and MMD depends on environmental conditions, with correlations decreasing with decreasing T . The strength of correlation between IWC and N t increases as T decreases. 
    more » « less
  3. Abstract Recent research suggests atmospheric cloud radiative effect (ACRE) acts as an important feedback mechanism for enhancing the development of convective self‐aggregation in idealized numerical simulations. Here, we seek observational relationships between longwave (LW) ACRE and the spatial organization of mesoscale convective systems (MCSs) in the tropics. Three convective organization metrics that are positively correlated with the area of MCS, that is, convective organization potential, the area fraction of precipitating MCS, and the precipitation fraction of MCS, are used to indicate the degree of convective organization. Our results show that the contrast in the LW ACRE inside and outside an MCS is consistent across different MCS precipitation intensities throughout the life cycle of an MCS, typically 90–100 W/m2, and provides important positive feedback to the circulation of the given MCS. However, the LW ACRE inside and outside an MCS as well as their difference are not strongly related to the degree of organization, suggesting that the LW cloud radiative feedback may be supportive of MCS formation and maintenance without necessarily being a dominant factor for spatial organization of MCSs. The domain average vertical velocity does tend to be related to the measures of convective organization, suggesting that factors that favor large‐scale low‐level convergence may exert a leading effect in creating an environment favorable for mesoscale organization of deep convection. 
    more » « less
  4. Abstract Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboardGOES‐16with 1‐km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35‐dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies. 
    more » « less
  5. Abstract On 7 February 2020, precipitation within the comma-head region of an extratropical cyclone was sampled remotely and in situ by two research aircraft, providing a vertical cross section of microphysical observations and fine-scale radar measurements. The sampled region was stratified vertically by distinct temperature layers and horizontally into a stratiform region on the west side, and a region of elevated convection on the east side. In the stratiform region, precipitation formed near cloud top as side-plane, polycrystalline, and platelike particles. These habits occurred through cloud depth, implying that the cloud-top region was the primary source of particles. Almost no supercooled water was present. The ice water content within the stratiform region showed an overall increase with depth between the aircraft flight levels, while the total number concentration slightly decreased, consistent with growth by vapor deposition and aggregation. In the convective region, new particle habits were observed within each temperature-defined layer along with detectable amounts of supercooled water, implying that ice particle formation occurred in several layers. Total number concentration decreased from cloud top to the −8°C level, consistent with particle aggregation. At temperatures > −8°C, ice particle concentrations in some regions increased to >100 L −1 , suggesting secondary ice production occurred at lower altitudes. WSR-88D reflectivity composites during the sampling period showed a weak, loosely organized banded feature. The band, evident on earlier flight legs, was consistent with enhanced vertical motion associated with frontogenesis, and at least partial melting of ice particles near the surface. A conceptual model of precipitation growth processes within the comma head is presented. Significance Statement Snowstorms over the northeast United States have major impacts on travel, power availability, and commerce. The processes by which snow forms in winter storms over this region are complex and their snowfall totals are hard to forecast accurately because of a poor understanding of the microphysical processes within the clouds composing the storms. This paper presents a case study from the NASA IMPACTS field campaign that involved two aircraft sampling the storm simultaneously with radars, and probes that measure the microphysical properties within the storm. The paper examines how variations in stability and frontal structure influence the microphysical evolution of ice particles as they fall from cloud top to the surface within the storm. 
    more » « less