Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2–3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites. 
                        more » 
                        « less   
                    
                            
                            Palladium bis-pincer complexes with controlled rigidity and inter-metal distance
                        
                    
    
            We report a series of redox-active bis(pincer) Pd( ii ) complexes in which the redox active units are based on either a diarylamido or a carbazolide framework. Compounds 1 and 2 contain two full diarylamido/bis(pincer) PNP units connected either via an Ar–O–Ar linker ( 1 ) or an Ar–Ar bond ( 2 ). Compound 3 is a fused bis(pincer) where the two PNP units share an aromatic ring. Compound 4 is built around an indolo[3,2- b ]carbazole core in which two NNN pincers share an aromatic ring similarly to 3 . These metal complexes all display two reversible oxidation waves with the Δ E values increasing in the order of 1 < 2 < 4 < 3 . The same trend in increasing electronic coupling emerges from the analysis of the IV-CT bands in the NIR portion of the optical spectra. The analysis of these compounds was further advanced by data from EPR spectroscopy, X-ray diffractometry, and DFT calculations. It is concluded that the monooxidized cations 2+–4+ belong to Class III on the Robin-Day classification of mixed-valence compounds. Compound 4 possesses enforced near-planarity that enables delocalization of the unpaired electron in 4+ across a broader conjugated system compared to 3+ . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1654029
- PAR ID:
- 10217752
- Date Published:
- Journal Name:
- Inorganic Chemistry Frontiers
- Volume:
- 7
- Issue:
- 22
- ISSN:
- 2052-1553
- Page Range / eLocation ID:
- 4357 to 4366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N 2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium( iii ) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH 2 ) 2 Cl] + , or results in dehydrohalogenation to the rhenium( iii ) amido complex, (PNP)Re(NH 2 )Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol −1 , while DFT computations indicate a substantially weaker N–H bond of the putative rhenium( iv )-imide intermediate (BDE = 38 kcal mol −1 ). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH 3 generation.more » « less
- 
            We report the synthesis of molybdenum and tungsten bromo dicarbonyl complexes (POCOPtBu)MIIBr(CO)2(M = Mo or W; POCOPtBu = κ3-C6H3-1,3-[OP( tBu)2]2) supported by an anionic PCP pincer ligand, and the chromium complex (PNPtBu)Cr0(CO)3(PNPtBu = 2,6-bis(di- tert-butyl-phosphinomethyl)pyridine) bearing a neutral PNP pincer scaffold. The three group six complexes described in this study have been characterized by Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS), NMR, and IR spectroscopy. Single crystal X-ray diffraction studies show the MoIIand WIIcomplexes adopt a six-coordinate distorted trigonal prismatic geometry, whereas the Cr0complex exhibits a distorted octahedral geometry.more » « less
- 
            Abstract A new method to synthesize complexes of the type [(CNC)RuII(NN)L]n+has been introduced, where CNC is a tridentate pincer composed of two (benz)imidazole derived NHC rings and a pyridyl ring, NN is a bidentate aromatic diimine ligand, L=bromide or acetonitrile, and n=1 or 2. Following this new method a series of six new complexes has been synthesized and characterized by spectroscopic, analytic, crystallographic, and computational methods. Their electrochemical properties have been studiedviacyclic voltammetry under both N2and CO2atmospheres. Photocatalytic reduction of CO2to CO was performed using these complexes both in the presence (sensitized) and absence (self‐sensitized) of an external photosensitizer. This study evaluates the effect of different CNC, NN, and L ligands in sensitized and self‐sensitized photocatalysis. Catalysts bearing the benzimidazole derived CNC pincer show much better activity for both sensitized and self‐sensitized photocatalysis as compared to catalysts bearing the imidazole derived CNC pincer. Furthermore, self‐sensitized photocatalysis requires a diimine ligand for CO2reduction with catalyst2ACNbeing the most active catalyst in this series with TON=85 and TOF=22 h−1with an electron donating 4,4′‐dimethyl‐2,2′‐bipyridyl (dmb) ligand and a benzimidazole derived CNC pincer.more » « less
- 
            Abstract Decarbonylation along with P‐atom transfer from the phosphaethynolate anion, PCO−, to the NbIVcomplex [(PNP)NbCl2(NtBuAr)] (1) (PNP=N[2‐PiPr2‐4‐methylphenyl]2−; Ar=3,5‐Me2C6H3) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(NtBuAr)] (2). Reduction of2with CoCp*2cleaves the P−P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(NtBuAr)] (3). Theoretical studies have been used to understand both the coupling of the P‐atom and the reductive cleavage of the P−P bond. Reaction of3with a two‐electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P−P coupled ligand, namely [(PNPP)Nb=S(NtBuAr)] (4).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    