skip to main content


Title: Palladium bis-pincer complexes with controlled rigidity and inter-metal distance
We report a series of redox-active bis(pincer) Pd( ii ) complexes in which the redox active units are based on either a diarylamido or a carbazolide framework. Compounds 1 and 2 contain two full diarylamido/bis(pincer) PNP units connected either via an Ar–O–Ar linker ( 1 ) or an Ar–Ar bond ( 2 ). Compound 3 is a fused bis(pincer) where the two PNP units share an aromatic ring. Compound 4 is built around an indolo[3,2- b ]carbazole core in which two NNN pincers share an aromatic ring similarly to 3 . These metal complexes all display two reversible oxidation waves with the Δ E values increasing in the order of 1 < 2 < 4 < 3 . The same trend in increasing electronic coupling emerges from the analysis of the IV-CT bands in the NIR portion of the optical spectra. The analysis of these compounds was further advanced by data from EPR spectroscopy, X-ray diffractometry, and DFT calculations. It is concluded that the monooxidized cations 2+–4+ belong to Class III on the Robin-Day classification of mixed-valence compounds. Compound 4 possesses enforced near-planarity that enables delocalization of the unpaired electron in 4+ across a broader conjugated system compared to 3+ .  more » « less
Award ID(s):
1654029
NSF-PAR ID:
10217752
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Inorganic Chemistry Frontiers
Volume:
7
Issue:
22
ISSN:
2052-1553
Page Range / eLocation ID:
4357 to 4366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rhenium complexes with aliphatic PNP pincer ligands have been shown to be capable of reductive N 2 splitting to nitride complexes. However, the conversion of the resulting nitride to ammonia has not been observed. Here, the thermodynamics and mechanism of the hypothetical N–H bond forming steps are evaluated through the reverse reaction, conversion of ammonia to the nitride complex. Depending on the conditions, treatment of a rhenium( iii ) precursor with ammonia gives either a bis(amine) complex [(PNP)Re(NH 2 ) 2 Cl] + , or results in dehydrohalogenation to the rhenium( iii ) amido complex, (PNP)Re(NH 2 )Cl. The N–H hydrogen atoms in this amido complex can be abstracted by PCET reagents which implies that they are quite weak. Calorimetric measurements show that the average bond dissociation enthalpy of the two amido N–H bonds is 57 kcal mol −1 , while DFT computations indicate a substantially weaker N–H bond of the putative rhenium( iv )-imide intermediate (BDE = 38 kcal mol −1 ). Our analysis demonstrates that addition of the first H atom to the nitride complex is a thermochemical bottleneck for NH 3 generation. 
    more » « less
  2. Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2–3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites. 
    more » « less
  3. Abstract

    The reaction chemistry of the bis‐tetrazinyl pyridine ligand (btzp) towards nitrogen oxyanions coordinated to zinc is studied in order to explore the reduction of the NOxsubstrates with a redox‐active ligand in the absence of redox activity at the metal. Following syntheses and characterization of (btzp)ZnX2for X=Cl, NO3and NO2, featuring O−Zn linkage of both nitrogen oxyanions, it is shown that a silylating agent selectively delivers silyl substituents to tetrazine nitrogens, without reductive deoxygenation of NOx−1. A new synthesis of the highly hydrogenated H4btzp, containing two dihydrotetrazine reductants is described as is the synthesis and characterization of (H4btzp)ZnX2for X=Cl and NO3, both of which show considerable hydrogen bonding potential of the dihydrotetrazine ring NH groups. The (H4btzp)ZnCl2complex does not bind zinc in the pincer pocket, but instead H4btzp becomes a bridge between neighboring atoms through tetrazine nitrogen atoms, forming a polymeric chain. The reaction of AgNO2with (H4btzp)ZnCl2is shown to proceed with fast nitrite deoxygenation, yielding water and free NO. Half of the H4btzp reducing equivalents form Ag0and thus the chloride ligand remains coordinated to the zinc metal center to yield (btzp)ZnCl2. To compare with AgNO2, experiments of (H4btzp)ZnCl2with NaNO2result in salt metathesis between chloride and nitrite, highlighting the importance of a redox‐active cation in the reduction of nitrite to NO.

     
    more » « less
  4. Several metal-free, nonaqueous, disproportionation redox-flow-battery chemistries based on electrochemically active organic molecules are presented. The electrochemistry of 9,10-diphenylanthracene (DPA), a polycyclic aromatic compound, involves two reversible redox couples separated by more than 3 V, which are associated with electrochemical disproportionation of the neutral molecule. Nonaqueous solvents are investigated with the dual aims of realizing this high voltage in a battery cell and maximizing active-species solubility. Functionalized DPA analogues are synthesized and shown to exhibit electrochemical responses similar to pristine DPA; appending diethyleneglycoxy esters on each phenyl group to form DdPA (9,10-Bis(4-(2-(2-methoxyethoxy)ethoxy)carbonyl-phenyl)anthracene) improves solubility over DPA by a factor of 20 in acetonitrile and 5 in dimethoxyethane. The 0.21 M maximum concentration of DdPA in dimethoxyethane suggests an energy density of 8 Wh l−1, which begins to approach the energy density of state-of-the-art aqueous RFBs. Charge/discharge of a stagnant one-dimensional cell delivers the highest cell voltages from an organic single-active-species RFB chemistry yet reported. Energy and power efficiencies for DPA in dimethoxyethane and DdPA in acetonitrile are similar to nonaqueous vanadium acetylacetonate in cells of similar construction.

     
    more » « less
  5. null (Ed.)
    Two NNN pincer complexes of Cu( ii ) and Ni( ii ) with BPI Me − [BPI Me − = 1,3-bis((6-methylpyridin-2-yl)imino)isoindolin-2-ide] have been prepared and characterized structurally, spectroscopically, and electrochemically. The single crystal structures of the two complexes confirmed their distorted trigonal bipyramidal geometry attained by three equatorial N-atoms from the ligand and two axially positioned water molecules to give [Cu(BPI Me )(H 2 O) 2 ]ClO 4 and [Ni(BPI Me )(H 2 O) 2 ]ClO 4 . Electrochemical studies of Cu( ii ) and Ni( ii ) complexes have been performed in acetonitrile to identify metal-based and ligand-based redox activity. When subjected to a saturated CO 2 atmosphere, both complexes displayed catalytic activity for the reduction of CO 2 with the Cu( ii ) complex displaying higher activity than the Ni( ii ) analogue. However, both complexes were shown to decompose into catalytically active heterogeneous materials on the electrode surface over extended reductive electrolysis periods. Surface analysis of these materials using energy dispersive spectroscopy as well as their physical appearance suggests the reductive deposition of copper and nickel metal on the electrode surface. Electrocatalysis and decomposition are proposed to be triggered by ligand reduction, where complex stability is believed to be tied to fluxional ligand coordination in the reduced state. 
    more » « less