skip to main content

Title: Daily Autocorrelation and Mean Temperature/Moisture Rise as Determining Factors for Future Heat-Wave Patterns in the United States
Abstract The frequency of heat waves (defined as daily temperature exceeding the local 90th percentile for at least three consecutive days) during summer in the United States is examined for daily maximum and minimum temperature and maximum apparent temperature, in recent observations and in 10 CMIP5 models for recent past and future. The annual average percentage of days participating in a heat wave varied between approximately 2% and 10% in observations and in the model’s historical simulations during 1979–2005. Applying today’s temperature thresholds to future projections, heat-wave frequencies rise to more than 20% by 2035–40. However, given the models’ slight overestimation of frequencies and positive trend rates during 1979–2005, these projected heat-wave frequencies should be regarded cautiously. The models’ overestimations may be associated with their higher daily autocorrelation than is found in observations. Heat-wave frequencies defined using apparent temperature, reflecting both temperature and atmospheric moisture, are projected to increase at a slightly (and statistically significantly) faster rate than for temperature alone. Analyses show little or no changes in the day-to-day variability or persistence (autocorrelation) of extreme temperature between recent past and future, indicating that the future heat-wave frequency will be due predominantly to increases in standardized (using historical period statistics) more » mean temperature and moisture content, adjusted by the local climatological daily autocorrelation. Using nonparametric methods, the average level and spatial pattern of future heat-wave frequency is shown to be approximately predictable on the basis of only projected mean temperature increases and local autocorrelation. These model-projected changes, even if only approximate, would impact infrastructure, ecology, and human well-being. « less
Authors:
; ; ;
Award ID(s):
1934358
Publication Date:
NSF-PAR ID:
10219204
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
59
Issue:
10
Page Range or eLocation-ID:
1735 to 1754
ISSN:
1558-8424
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequencymore »trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

    « less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. Extreme precipitation can have significant adverse impacts on infrastructure and property, human health, and local economies. This paper examines recent changes in extreme precipitation in the northeast United States. Daily station data from 58 stations missing less than 5% of days for the years 1979–2014 from the U.S. Historical Climatology Network were used to analyze extreme precipitation, defined as the top 1% of days with precipitation. A statistically significant (95% confidence level) increasing trend of the threshold for the top 1% of extreme precipitation events was found (0.3 mm yr−1). This increasing trend was due to both an increase in the frequency of extreme events and the magnitude of extreme events. Rainfall events ≥ 150 mm (24-h accumulation) increased in frequency from 6 events between 1979 and 1996 to 25 events between 1997 and 2014, a 317% increase. The annual daily maximum precipitation, or the highest recorded precipitation amount in a given year, increased by an average of 1.6 mm yr−1, a total increase of 58.0 mm. Decreasing trends in extreme precipitation were observed east of Lake Erie during the warm season. Increasing trends in extreme precipitation were most robust during the fall months of September, October, and November, andmore »particularly at locations further inland. The analysis showed that increases in events that were tropical in nature, or associated with tropical moisture, led to the observed increase in extreme precipitation during the fall months.

    « less
  4. Heat waves are increasing in frequency, duration, and intensity and are strongly linked to anthropogenic climate change. However, few studies have examined heat waves in Florida, despite an older population and increasingly urbanized land areas that make it particularly susceptible to heat impacts. Heavy precipitation events are also becoming more frequent and intense; recent climate model simulations showed that heavy precipitation in the three days after a Florida heat wave follow these trends, yet the underlying dynamic and thermodynamic mechanisms have not been investigated. In this study, a heat wave climatology and trend analysis are developed from 1950 to 2016 for seven major airports in Florida. Heat waves are defined based on the 95th percentile of daily maximum, minimum, and mean temperatures. Results show that heat waves exhibit statistically significant increases in frequency and duration at most stations, especially for mean and minimum temperature events. Frequency and duration increases are most prominent at Tallahassee, Tampa, Miami, and Key West. Heat waves in northern Florida are characterized by large-scale continental ridging, while heat waves in central and southern Florida are associated with a combination of a continental ridge and a westward extension of the Bermuda–Azores high. Heavy precipitation events that followmore »a heat wave are characterized by anomalously large ascent and moisture, as well as strong instability. Light precipitation events in northern Florida are characterized by advection of drier air from the continent, while over central and southern Florida, prolonged subsidence is the most important difference between heavy and light events.

    « less
  5. Abstract This paper describes the downscaling of an ensemble of 12 general circulation models (GCMs) using the Weather Research and Forecasting (WRF) Model at 12-km grid spacing over the period 1970–2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. The 1 April snowpack declines are large over the lower-to-middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCMs producing large, unphysical areas of snowpackmore »loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the twenty-first century. Significance Statement This paper provides a unique high-resolution view of projected climate change over the Pacific Northwest and does so using an ensemble of regional climate models, affording a look at the uncertainties in local impacts of global warming. The paper examines regional meteorological processes influenced by global warming and provides guidance for adaptation and preparation.« less