skip to main content


Title: The Combined Effects of Increased pCO2 and Warming on a Coastal Phytoplankton Assemblage: From Species Composition to Sinking Rate
In addition to ocean acidification, a significant recent warming trend in Chinese coastal waters has received much attention. However, studies of the combined effects of warming and acidification on natural coastal phytoplankton assemblages here are scarce. We conducted a continuous incubation experiment with a natural spring phytoplankton assemblage collected from the Bohai Sea near Tianjin. Experimental treatments used a full factorial combination of temperature (7 and 11°C) and pCO 2 (400 and 800 ppm) treatments. Results suggest that changes in pCO 2 and temperature had both individual and interactive effects on phytoplankton species composition and elemental stoichiometry. Warming mainly favored the accumulation of picoplankton and dinoflagellate biomass. Increased pCO 2 significantly increased particulate organic carbon to particulate organic phosphorus (C:P) and particulate organic carbon to biogenic silica (C:BSi) ratios, and decreased total diatom abundance; in the meanwhile, higher pCO 2 significantly increased the ratio of centric to pennate diatom abundance. Warming and increased pCO 2 both greatly decreased the proportion of diatoms to dinoflagellates. The highest chlorophyll a biomass was observed in the high pCO 2 , high temperature phytoplankton assemblage, which also had the slowest sinking rate of all treatments. Overall, there were significant interactive effects of increased pCO 2 and warming on dinoflagellate abundance, pennate diatom abundance, diatom vs. dinoflagellates ratio and the centric vs. pennate ratio. These findings suggest that future ocean acidification and warming trends may individually and cumulatively affect coastal biogeochemistry and carbon fluxes through shifts in phytoplankton species composition and sinking rates.  more » « less
Award ID(s):
1851222 1638804
NSF-PAR ID:
10219475
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
8
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anil, Arga Chandrashekar (Ed.)
    There is little information on the impacts of climate change on resource partitioning for mixotrophic phytoplankton. Here, we investigated the hypothesis that light interacts with temperature and CO 2 to affect changes in growth and cellular carbon and nitrogen content of the mixotrophic dinoflagellate, Karlodinium veneficum , with increasing cellular carbon and nitrogen content under low light conditions and increased growth under high light conditions. Using a multifactorial design, the interactive effects of light, temperature and CO 2 were investigated on K . veneficum at ambient temperature and CO 2 levels (25°C, 375 ppm), high temperature (30°C, 375 ppm CO 2 ), high CO 2 (30°C, 750 ppm CO 2 ), or a combination of both high temperature and CO 2 (30°C, 750 ppm CO 2 ) at low light intensities (LL: 70 μmol photons m -2 s -2 ) and light-saturated conditions (HL: 140 μmol photons m -2 s -2 ). Results revealed significant interactions between light and temperature for all parameters. Growth rates were not significantly different among LL treatments, but increased significantly with temperature or a combination of elevated temperature and CO 2 under HL compared to ambient conditions. Particulate carbon and nitrogen content increased in response to temperature or a combination of elevated temperature and CO 2 under LL conditions, but significantly decreased in HL cultures exposed to elevated temperature and/or CO 2 compared to ambient conditions at HL. Significant increases in C:N ratios were observed only in the combined treatment under LL, suggesting a synergistic effect of temperature and CO 2 on carbon assimilation, while increases in C:N under HL were driven only by an increase in CO 2 . Results indicate light-driven variations in growth and nutrient acquisition strategies for K . veneficum that may benefit this species under anticipated climate change conditions (elevated light, temperature and p CO 2 ) while also affecting trophic transfer efficiency during blooms of this species. 
    more » « less
  2. Abstract

    Following the passage of a tropical cyclone (TC) the changes in temperature, salinity, nutrient concentration, water clarity, pigments and phytoplankton taxa were assessed at 42 stations from eight sites ranging from the open ocean, through the coastal zone and into estuaries. The impacts of the TC were estimated relative to the long-term average (LTA) conditions as well as before and after the TC. Over all sites the most consistent environmental impacts associated with TCs were an average 41% increase in turbidity, a 13% decline in salinity and a 2% decline in temperature relative to the LTA. In the open ocean, the nutrient concentrations, cyanobacteria and picoeukaryote abundances increased at depths between 100 and 150 m for up to 3 months following a TC. While at the riverine end of coastal estuaries, the predominate short-term response was a strong decline in salinity and phytoplankton suggesting these impacts were initially dominated by advection. The more intermediate coastal water-bodies generally experienced declines in salinity, significant reductions in water clarity, plus significant increases in nutrient concentrations and phytoplankton abundance. These intermediate waters typically developed dinoflagellate, diatom or cryptophyte blooms that elevated phytoplankton biomass for 1–3 months following a TC.

     
    more » « less
  3. Abstract

    In coastal West Antarctic Peninsula (WAP) waters, large phytoplankton blooms in late austral spring fuel a highly productive marine ecosystem. However, WAP atmospheric and oceanic temperatures are rising, winter sea ice extent and duration are decreasing, and summer phytoplankton biomass in the northern WAP has decreased and shifted toward smaller cells. To better understand these relationships, an Imaging FlowCytobot was used to characterize seasonal (spring to autumn) phytoplankton community composition and cell size during a low (2017–2018) and high (2018–2019) chlorophyllayear in relation to physical drivers (e.g., sea ice and meteoric water) at Palmer Station, Antarctica. A shorter sea ice season with early rapid retreat resulted in low phytoplankton biomass with a low proportion of diatoms (2017–2018), while a longer sea ice season with late protracted retreat resulted in the opposite (2018–2019). Despite these differences, phytoplankton seasonal succession was similar in both years: (1) a large‐celled centric diatom bloom during spring sea ice retreat; (2) a peak summer phase comprised of mixotrophic cryptophytes with increases in light and postbloom organic matter; and (3) a late summer phase comprised of small (< 20 μm) diatoms and mixed flagellates with increases in wind‐driven nutrient resuspension. In addition, cell diameter decreased from November to April with increases in meteoric water in both years. The tight coupling between sea ice, meltwater, and phytoplankton species composition suggests that continued warming in the WAP will affect phytoplankton seasonal dynamics, and subsequently seasonal food web dynamics.

     
    more » « less
  4. This study evaluated water quality, nitrogen (N), and phytoplankton assemblage linkages along the western Long Island Sound (USA) shoreline (Nov. 2020 – Dec. 2021) following COVID-19 stay-in-place (SIP) orders through monthly surveys and N-addition bioassays. Ammonia-N (AmN; NH3+NH4+) negatively correlated with total chlorophyll-a (chl-a) at all sites; this was significant at Alley Creek, adjacent to urban wastewater inputs, and at Calf Pasture, by the Norwalk River (Spearman rank correlation, p<0.01 and 0.02). Diatoms were abundant throughout the study, though dinoflagellates (Heterocapsa, Prorocentrum), euglenoids/cryptophytes, and both nano- and picoplankton biomass increased during summer. In field and experimental assessments, high nitrite+nitrate (N+N) and low AmN increased diatom abundances while AmN was positively linked to cryptophyte concentrations. Likely N+N decreases with presumably minimal changes in AmN and organic N during COVID-19 SIP resulted in phytoplankton assemblage shifts (decreased diatoms, increased euglenoids/cryptophytes), highlighting the ecological impacts of N-form delivered by wastewater to urban estuaries. 
    more » « less
  5. Abstract

    In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.

     
    more » « less