skip to main content


Title: A Computational Fluid Dynamics Investigation of Pneumatic Atomization, Aerosol Transport, and Deposition in Aerosol Jet Printing Process
Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing technique, which has emerged as a high-resolution method for the fabrication of a broad spectrum of electronic devices. Despite the advantages and critical applications of AJP in the printed-electronics industry, AJP process is intrinsically unstable, complex, and prone to unexpected gradual drifts, which adversely affect the morphology and consequently the functional performance of a printed electronic device. Therefore, in situ process monitoring and control in AJP is an inevitable need. In this respect, in addition to experimental characterization of the AJP process, physical models would be required to explain the underlying aerodynamic phenomena in AJP. The goal of this research work is to establish a physics-based computational platform for prediction of aerosol flow regimes and ultimately, physics-driven control of the AJP process. In pursuit of this goal, the objective is to forward a three-dimensional (3D) compressible, turbulent, multiphase computational fluid dynamics (CFD) model to investigate the aerodynamics behind: (i) aerosol generation, (ii) aerosol transport, and (iii) aerosol deposition on a moving free surface in the AJP process. The complex geometries of the deposition head as well as the pneumatic atomizer were modeled in the ansys-fluent environment, based on patented designs in addition to accurate measurements, obtained from 3D X-ray micro-computed tomography (μ-CT) imaging. The entire volume of the constructed geometries was subsequently meshed using a mixture of smooth and soft quadrilateral elements, with consideration of layers of inflation to obtain an accurate solution near the walls. A combined approach, based on the density-based and pressure-based Navier–Stokes formation, was adopted to obtain steady-state solutions and to bring the conservation imbalances below a specified linearization tolerance (i.e., 10−6). Turbulence was modeled using the realizable k-ε viscous model with scalable wall functions. A coupled two-phase flow model was, in addition, set up to track a large number of injected particles. The boundary conditions of the CFD model were defined based on experimental sensor data, recorded from the AJP control system. The accuracy of the model was validated using a factorial experiment, composed of AJ-deposition of a silver nanoparticle ink on a polyimide substrate. The outcomes of this study pave the way for the implementation of physics-driven in situ monitoring and control of AJP.  more » « less
Award ID(s):
1752069
NSF-PAR ID:
10219737
Author(s) / Creator(s):
 ; ; ; ;
Date Published:
Journal Name:
Journal of Micro and Nano-Manufacturing
Volume:
9
Issue:
1
ISSN:
2166-0468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aerosol jet printing (AJP) is a direct-write additive manufacturing (AM) method, emerging as the process of choice for the fabrication of a broad spectrum of electronics, such as sensors, transistors, and optoelectronic devices. However, AJP is a highly complex process, prone to intrinsic gradual drifts. Consequently, real-time process monitoring and control in AJP is a bourgeoning need. The goal of this work is to establish an integrated, smart platform for in situ and real-time monitoring of the functional properties of AJ-printed electronics. In pursuit of this goal, the objective is to forward a multiple-input, single-output (MISO) intelligent learning model—based on sparse representation classification (SRC)—to estimate the functional properties (e.g., resistance) in situ as well as in real-time. The aim is to classify the resistance of printed electronic traces (lines) as a function of AJP process parameters and the trace morphology characteristics (e.g., line width, thickness, and cross-sectional area (CSA)). To realize this objective, line morphology is captured using a series of images, acquired: (i) in situ via an integrated high-resolution imaging system and (ii) in real-time via the AJP standard process monitor camera. Utilizing image processing algorithms developed in-house, a wide range of 2D and 3D morphology features are extracted, constituting the primary source of data for the training, validation, and testing of the SRC model. The four-point probe method (also known as Kelvin sensing) is used to measure the resistance of the deposited traces and as a result, to define a priori class labels. The results of this study exhibited that using the presented approach, the resistance (and potentially, other functional properties) of printed electronics can be estimated both in situ and in real-time with an accuracy of ≥ 90%. 
    more » « less
  2. Aerosol jet printing (AJP) is a complex process for additive electronics that is often unstable. To overcome this instability, observation while printing and control of the printing process using image-based monitoring is demonstrated. This monitoring is validated against images taken after the print and shown highly correlated and useful for the determination of printed linewidth. These images and the observed linewidth are used as input for closed-loop control of the printing process, with print speed changed in response to changes in the observed linewidth. Regression is used to relate these quantities and forms the basis of proportional and proportional integral control. Electrical test structures were printed with controlled and uncontrolled printing, and it was found that the control influenced their linewidth and electrical properties, giving improved uniformity in both size and electrical performance. 
    more » « less
  3. Abstract

    Direct ink writing (DIW) process is a facile additive manufacturing technology to fabricate three-dimensional (3D) objects with various materials. Its versatility has attracted considerable interest in academia and industry in recent years. As such, upsurging endeavors are invested in advancing the ink flow behaviors in order to optimize the process resolution and the printing quality. However, so far, the physical phenomena during the DIW process are not revealed in detail, leaving a research gap between the physical experiments and its underlying theories. Here, we present a comprehensive analytical study of non-Newtonian ink flow behavior during the DIW process. Different syringe-nozzle geometries are modeled for the comparative case studies. By using the computational fluid dynamics (CFD) simulation method, we reveal the shear-thinning property during the ink extrusion process. Besides, we study the viscosity, shear stress, and velocity fields, and analyze the advantages and drawbacks of each syringe-nozzle model. On the basis of these investigations and analyses, we propose an improved syringe-nozzle geometry for stable extrusion and high printing quality. A set of DIW printing experiments and rheological characterizations are carried out to verify the simulation studies. The results developed in this work offer an in-depth understanding of the ink flow behavior in the DIW process, providing valuable guidelines for optimizing the physical DIW configuration toward high-resolution printing and, consequently, improving the performance of DIW-printed objects.

     
    more » « less
  4. The long-term goal of this work is to predict and control the microstructure evolution in metal additive manufacturing processes. In pursuit of this goal, we developed and applied an approach which combines physics-based thermal modeling with data-driven machine learning to predict two important microstructure-related characteristics, namely, the meltpool depth and primary dendritic arm spacing in Nickel Alloy 718 parts made using the laser powder bed fusion (LPBF) process. Microstructure characteristics are critical determinants of functional physical properties, e.g., yield strength and fatigue life. Currently, the microstructure of LPBF parts is optimized through a cumbersome build-and-characterize empirical approach. Rapid and accurate models for predicting microstructure evolution are therefore valuable to reduce process development time and achieve consistent properties. However, owing to their computational complexity, existing physics-based models for predicting the microstructure evolution are limited to a few layers, and are challenging to scale to practical parts. This paper addresses the aforementioned research gap via a novel physics and data integrated modeling approach. The approach consists of two steps. First, a rapid, part-level computational thermal model was used to predict the temperature distribution and cooling rate in the entire part before it was printed. Second, the foregoing physics-based thermal history quantifiers were used as inputs to a simple machine learning model (support vector machine) trained to predict the meltpool depth and primary dendritic arm spacing based on empirical materials characterization data. As an example of its efficacy, when tested on a separate set of samples from a different build, the approach predicted the primary dendritic arm spacing with root mean squared error ≈ 110 nm. This work thus presents an avenue for future physics-based optimization and control of microstructure evolution in LPBF. 
    more » « less
  5. null (Ed.)
    Abstract. Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study). 
    more » « less