skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Augmented Reality: Telehealth Demonstration Application
Augmented Reality (AR) as a technology will improve the way we work and live in the future. The Microsoft HoloLens device allows for rendering of interactive virtual components into a real world space. The HoloLens is an augmented reality headset and can display these virtual components in front of the user’s eyes, so the data needed to complete a real-world task will always be available. The nature of a HoloLens device lends itself useful for applications in a healthcare setting. Potential benefits come from transitioning to a more hands-free environment such as allowing the logging of data while in sterile environments without needing to sterilize repeatedly from touching paper or tablet. This project developed an augmented reality (AR) application to include a care plan tracker established by a patient’s doctor to allow the patient to do daily tasks without a health care worker’s supervision. The application displays the medications that the patient needs to ingest, daily tasks to complete, and health data to record. The application allows the physician to retrieve useful patient information regularly without scheduled physicals. This project sets a baseline that will provide future developers with documentation, research, and this sample application to assist in the design and construction of more complex applications in the future at the University of New Hampshire.  more » « less
Award ID(s):
1659377
PAR ID:
10225096
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Practice and Experience in Advanced Research Computing (PEARC ’20)
Page Range / eLocation ID:
452 to 455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a seminal article on augmented reality (AR) [7], Ron Azuma defines AR as a variation of virtual reality (VR), which completely immerses a user inside a synthetic environment. Azuma says “In contrast, AR allows the user to see the real world, with virtual objects superimposed upon or composited with the real world” [7] (emphasis added). Typically, a user wears a tracked stereoscopic head-mounted display (HMD) or holds a smartphone, showing the real world through optical or video means, with superimposed graphics that provide the appearance of virtual content that is related to and registered with the real world. While AR has been around since the 1960s [72], it is experiencing a renaissance of development and consumer interest. With exciting products from Microsoft (HoloLens), Metavision (Meta 2), and others; Apple’s AR Developer’s Kit (ARKit); and well-funded startups like Magic Leap [54], the future is looking even brighter, expecting that AR technologies will be absorbed into our daily lives and have a strong influence on our society in the foreseeable future. 
    more » « less
  2. null (Ed.)
    Mobile Augmented Reality (AR) provides immersive experiences by aligning virtual content (holograms) with a view of the real world. When a user places a hologram it is usually expected that like a real object, it remains in the same place. However, positional errors frequently occur due to inaccurate environment mapping and device localization, to a large extent determined by the properties of natural visual features in the scene. In this demonstration we present SceneIt, the first visual environment rating system for mobile AR based on predictions of hologram positional error magnitude. SceneIt allows users to determine if virtual content placed in their environment will drift noticeably out of position, without requiring them to place that content. It shows that the severity of positional error for a given visual environment is predictable, and that this prediction can be calculated with sufficiently high accuracy and low latency to be useful in mobile AR applications. 
    more » « less
  3. Augmented reality (AR), which overlays virtual content on top of the user’s perception of the real world, has now begun to enter the consumer market. Besides smartphone platforms, early-stage head-mounted displays such as the Microsoft HoloLens are under active development. Many compelling uses of these technologies are multi-user: e.g., inperson collaborative tools, multiplayer gaming, and telepresence. While prior work on AR security and privacy has studied potential risks from AR applications, new risks will also arise among multiple human users. In this work, we explore the challenges that arise in designing secure and private content sharing for multi-user AR. We analyze representative application case studies and systematize design goals for security and functionality that a multi-user AR platform should support. We design an AR content sharing control module that achieves these goals and build a prototype implementation (ShareAR) for the HoloLens. This work builds foundations for secure and private multi-user AR interactions. 
    more » « less
  4. Abstract The advancement in virtual reality/augmented reality (VR/AR) has been achieved by breakthroughs in the realistic perception of virtual elements. Although VR/AR technology is advancing fast, enhanced sensor functions, long‐term wearability, and seamless integration with other electronic components are still required for more natural interactions with the virtual world. Here, this report reviews the recent advances in multifunctional wearable sensors and integrated functional devices for VR/AR applications. Specified device designs, packaging strategies, and interactive physiological sensors are summarized based on their methodological approaches for sensory inputs and virtual feedback. In addition, limitations of the existing systems, key challenges, and future directions are discussed. It is envisioned that this progress report's outcomes will expand the insights on wearable functional sensors and device interfaces toward next‐generation VR/AR technologies. 
    more » « less
  5. Clinically, nurses must rapidly identify deteriorating patients and escalate patient care to adverse events. Novices, however, can easily succumb to cognitive overload. Augmented-reality (AR) devices, such as the Microsoft HoloLens 2, may help nurses attend to task-relevant information more effectively. The aim of this pilot study was to assess experienced nurses’ perceptions on the usability of AR. Practicing nurses were recruited for this study. Following a brief tutorial, demonstration and hands-on use of the HoloLens, nurses completed the system-usability scale (SUS) to rate usability. Additionally, interviews were conducted after the simulated use session. Experienced nurses (n=11) rated the usability of AR as 62.5±7.8. Themes that emerged from our open-ended interviews included the need for AR in nursing education and the potential benefit of a patient care checklist. Use of AR to support nurse decision making may reduce cognitive workload and focus attention on critical areas to recognize patient deterioration. 
    more » « less