skip to main content


Title: p-Type molecular doping by charge transfer in halide perovskite
Electronic technologies critically rely on the ability to broadly dope the active semiconductor; yet the promising class of halide perovskite semiconductors so far does not allow for significant control over carrier type (p- or n-) and density. The molecular doping approach offers important opportunities for generating free carriers through charge transfer. In this work, we demonstrate effective p-doping of MAPb 0.5 Sn 0.5 I 3 films using the molecular dopant F4TCNQ as a grain boundary coating, offering a conductivity and hole density tuning range of up to five orders of magnitude, associated with a 190 meV Fermi level down-shift. While charge transfer between MAPb 0.5 Sn 0.5 I 3 and F4TCNQ appears efficient, dopant ionization decreases with increasing Pb content, highlighting the need for appropriate energy offset between host and dopant molecule. Finally, we show that electrical p-doping impacts the perovskite optoelectronic properties, with a hole recombination lifetime increase of over one order of magnitude, suggesting passivation of deep traps.  more » « less
Award ID(s):
1807797 2004869
NSF-PAR ID:
10227513
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Materials Advances
ISSN:
2633-5409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The remarkable optoelectronic properties of metal halide perovskites have generated intense research interest over the last few years. The ability to control and manipulate the crystallisation and stoichiometry of perovskite thin-films has allowed for impressive strides in the development of highly efficient perovskite solar cells. However, being able to effectively modify the interfaces of metal halide perovskites, and to controllably p- or n-type dope the surfaces, may be key to further improvements in the efficiency and long-term stability of these devices. In this study, we use surface doping of the mixed-cation, mixed-halide perovskite FA 0.85 MA 0.15 Pb(I 0.85 Br 0.15 ) 3 (FA – formamidinium; MA – methylammonium) to improve the hole extraction from the perovskite solar cell. By treating the surface of the perovskite film with a strongly oxidizing molybdenum tris(dithiolene) complex, we achieve a shift in the work function that is indicative of p-doping, and a twofold increase in the total conductivity throughout the film. We probe the associated interfacial chemistry through photoelectron and solid-state nuclear magnetic resonance spectroscopies and confirm that charge-transfer occurs between the perovskite and dopant complex. The resulting p-doped interface constitutes a homojunction with increased hole-selectivity. With charge-selective layers, we show that this surface doping enhances the device performance of perovskite solar cells resulting in steady-state efficiencies approaching 21%. Finally, we demonstrate that a surface treatment with this dopant produces the same effect as the commonly employed additive 4- tert butylpyridine ( t BP), allowing us to achieve “ t BP-free” devices with steady-state efficiencies of over 20%, and enhanced thermal stability as compared to devices processed using t BP. Our findings therefore demonstrate that molecular doping is a feasible route to tune and control the surface properties of metal halide perovskites. 
    more » « less
  2. The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)-ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in the formation of P3HT radical cations (polarons) for all the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe the formation of a charge-transfer complex with F4TCNQ and formation of a “localized” P3HT polaron on non-aggregated chains upon doping with BCF, while there is no indication of dopant-induced species in case of Mo(tfd-CO2Me)3. We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism. 
    more » « less
  3. Electron-transport materials such as fullerenes are widely used in perovskite solar cells to selectively transfer the photogenerated electrons to the electrodes. In order to minimize losses at the interface between the fullerene and the electrode, it is important to reduce the energy difference between the transport level of the two materials. A common approach to reduce such energy mismatch is to increase the charge carrier density in the semiconductor through doping. A variety of molecular dopants have been reported to reduce (n-dope) fullerenes. However, most of them are either difficult to process or extremely air sensitive, with most n-dopants leading to the formation of undesirable side products. Dimers formed by 19-electron organometallic sandwich compounds combine strong reducing ability, clean reactivity, and moderate air stability, while being processable both from solution and in vacuum. In this work, we have investigated the use of pentamethylcyclopentadienyl mesitylene ruthenium dimer, (RuCp*mes) 2 , as a dopant for C 60 in fully vacuum-deposited n–i–p perovskite solar cells. The (RuCp*mes) 2 was either co-evaporated with the fullerene or deposited as a pure thin film on top of the transparent electrode prior to the deposition of the fullerene. It was found that both the co-evaporated blends and the bilayers are effective electron-transport layers, leading to solar cells with efficiencies up to 18%. 
    more » « less
  4. null (Ed.)
    While typical perovskite solar cells (PSCs) with doped Spiro-OMeTAD as a hole transport material (HTM) have shown rapid increase in their power-conversion efficiencies (PCEs), their poor stability remains a big concern as the dopants and additives used with Spiro-OMeTAD have a strong tendency to diffuse into and degrade the perovskite active layer under normal operating conditions. Aiming to push forward the development of PSCs, many dopant-free small-molecular HTMs have been reported based on energetic considerations for charge transfer and criteria for charge transport. However, the PCEs of the state-of-the-art PSCs with dopant-free small-molecular HTMs are still inferior to those using doped Spiro-OMeTAD, and little attention has been paid to the interactions between the HTM and perovskite absorber in PSCs. Here, we report a facile design concept to functionalize HTMs so that they can passivate perovskite surface defects and enable perovskite active layers with lower density of surface trap states and more efficient charge transfer to the hole transport layer. As a consequence, perovskite solar cells with a functionalized HTM exhibit a champion PCE of 22.4%, the highest value for PSCs using dopant-free small molecular HTMs to date, and substantively improved operational stability under continuous illumination. With a T 80 of (1617 ± 7) h for encapsulated cells tested at 30 °C in air, the PSCs containing the functionalized HTM are among the most stable PSCs using dopant-free small-molecular HTMs. The effectiveness of our strategy is demonstrated in PSCs comprising both a state-of-the-art MA-free perovskite and MAPbI, a system having more surface defects, and implies the potential generality of our strategy for a broad class of perovskite systems, to further advance highly efficient and stable solar cells. 
    more » « less
  5. Abstract

    Conjugated polymer‐based block copolymers (CP‐BCPs) are an unexplored class of materials for organic thermoelectrics. Herein, the authors report on the electronic conductivity (σ) and Seebeck coefficient (α) of a newly synthesized CP‐BCP, poly(3‐hexylthiophene)‐block‐poly (oligo‐oxyethylene methacrylate) (P3HT‐b‐POEM), upon solution co‐processing with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and subsequently vapor‐doping with a molecular dopant, 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). It is found that the addition of the hydrophilic block POEM greatly enhances the processability of P3HT, enabling homogeneous solution‐mixing with LiTFSI. Notably, interactions between P3HT‐b‐POEM with ionic species significantly improve molecular order and unexpectedly cause electrical oxidizing doping of P3HT block both in solution and solid‐states, a phenomenon that has not been previously observed in Li‐salt containing P3HT. Vapor doping of P3HT‐b‐POEM‐LiTFSI thin films with F4TCNQ further enhances σ and yields a thermoelectric power factorPF=α2σ of 13.0 µW m−1 K−2, which is more than 20 times higher than salt‐free P3HT‐b‐POEM sample. Through modeling thermoelectric behaviors of P3HT‐b‐POEM with the Kang‐Snyder transport model, the improvement inPFis attributed to higher electronic charge mobility originating from the enhanced molecular ordering of P3HT. The results demonstrate that solution co‐processing CP‐BCPs with a salt is a powerful method to control structure and performance of organic thermoelectric materials.

     
    more » « less