skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Sensor Selection for Dynamics-Driven User-Interface Design
We present a method for dynamics-driven, user-interface design for a human-automation system via sensor selection. We define the user interface to be the output of a multiple-input-multiple-output (MIMO) linear time-invariant (LTI) system and formulate the design problem as one of selecting an output matrix from a given set of candidate output matrices. Necessary conditions for situation awareness are captured as additional constraints on the selection of the output matrix. These constraints depend on the level of trust the human has in the automation. We show that the resulting user-interface design problem is a combinatorial, set-cardinality minimization problem with set function constraints. We propose tractable algorithms to compute optimal or suboptimal solutions with suboptimality bounds. Our approaches exploit monotonicity and submodularity present in the design problem and rely on constraint programming and submodular maximization. We apply this method to the IEEE 118-bus, to construct correct-by-design interfaces under various operating scenarios.  more » « less
Award ID(s):
1757207 1728605
NSF-PAR ID:
10227868
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Control Systems Technology
ISSN:
1063-6536
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In architectural design, architects explore a vast amount of design options to maximize various performance criteria, while adhering to specific constraints. In an effort to assist architects in such a complex endeavour, we propose IDOME, an interactive system for computer-aided design optimization. Our approach balances automation and control by efficiently exploring, analyzing, and filtering space layouts to inform architects' decision-making better. At each design iteration, IDOME provides a set of alternative building layouts which satisfy user-defined constraints and optimality criteria concerning a user-defined space parametrization. When the user selects a design generated by IDOME, the system performs a similar optimization process with the same (or different) parameters and objectives. A user may iterate this exploration process as many times as needed. In this work, we focus on optimizing built environments using architectural metrics by improving the degree of visibility, accessibility, and information gaining for navigating a proposed space. This approach, however, can be extended to support other kinds of analysis as well. We demonstrate the capabilities of IDOME through a series of examples, performance analysis, user studies, and a usability test. The results indicate that IDOME successfully optimizes the proposed designs concerning the chosen metrics and offers a satisfactory experience for users with minimal training. 
    more » « less
  2. We present PULPO, a floating-point baseband-processing accelerator for massive multi-user multiple-input multiple-output (MU-MIMO) basestations (BSs). PULPO accelerates matrix-vector products, not only with a matrix but also with its Hermitian, as well as affine transforms and nonlinear projections used in iterative algorithms that outclass traditional linear methods in various applications. PULPO is integrated in a system-on-chip (SoC) with a tight integration to the system's data memory, facilitating data exchange and co-operation with 8 RISC-V cores. The fabricated accelerator achieves comparable efficiency as recently-proposed fixed-point baseband processors, while eliminating the burdens associated with fixed-point design, thus simplifying massive MU-MIMO BS development. 
    more » « less
  3. Abstract As artificial intelligence and industrial automation are developing, human–robot collaboration (HRC) with advanced interaction capabilities has become an increasingly significant area of research. In this paper, we design and develop a real-time, multi-model HRC system using speech and gestures. A set of 16 dynamic gestures is designed for communication from a human to an industrial robot. A data set of dynamic gestures is designed and constructed, and it will be shared with the community. A convolutional neural network is developed to recognize the dynamic gestures in real time using the motion history image and deep learning methods. An improved open-source speech recognizer is used for real-time speech recognition of the human worker. An integration strategy is proposed to integrate the gesture and speech recognition results, and a software interface is designed for system visualization. A multi-threading architecture is constructed for simultaneously operating multiple tasks, including gesture and speech data collection and recognition, data integration, robot control, and software interface operation. The various methods and algorithms are integrated to develop the HRC system, with a platform constructed to demonstrate the system performance. The experimental results validate the feasibility and effectiveness of the proposed algorithms and the HRC system. 
    more » « less
  4. The rise of machine learning (ML) technology inspires a boom in its applications in electronic design automation (EDA) and helps improve the degree of automation in chip designs. However, manually crafting ML models remains a complex and time-consuming process because it requires extensive human expertise and tremendous engineering efforts to carefully extract features and design model architectures. In this work, we leverage automated ML techniques to automate the ML model development for routability prediction, a well-established technique that can help to guide cell placement toward routable solutions. We present an automated feature selection method to identify suitable features for model inputs. We develop a neural architecture search method to search for high-quality neural architectures without human interference. Our search method supports various operations and highly flexible connections, leading to architectures significantly different from all previous human-crafted models. Our experimental results demonstrate that our automatically generated models clearly outperform multiple representative manually crafted solutions with a superior 9.9% improvement. Moreover, compared with human-crafted models, which easily take weeks or months to develop, our efficient automated machine-learning framework completes the whole model development process in only 1 day. 
    more » « less
  5. Given a linear dynamical system, we consider the problem of selecting (at design-time) an optimal set of sensors (subject to certain budget constraints) to minimize the trace of the steady state error covariance matrix of the Kalman filter. Previous work has shown that this problem is NP-hard for certain classes of systems and sensor costs; in this paper, we show that the problem remains NP-hard even for the special case where the system is stable and all sensor costs are identical. Furthermore, we show the stronger result that there is no constant-factor (polynomial-time) approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering. 
    more » « less