The use of carrier phase data is the main driver for high-precision Global Navigation Satellite Systems (GNSS) positioning solutions, such as Real-Time Kinematic (RTK). However, carrier phase observations are ambiguous by an unknown number of cycles, and their use in RTK relies on the process of mapping real-valued ambiguities to integer ones, so-called Integer Ambiguity Resolution (IAR). The main goal of IAR is to enhance the position solution by virtue of its correlation with the estimated integer ambiguities. With the deployment of new GNSS constellations and frequencies, a large number of observations is available. While this is generally positive, positioning in medium and long baselines is challenging due to the atmospheric residuals. In this context, the process of solving the complete set of ambiguities, so-called Full Ambiguity Resolution (FAR), is limiting and may lead to a decreased availability of precise positioning. Alternatively, Partial Ambiguity Resolution (PAR) relaxes the condition of estimating the complete vector of ambiguities and, instead, finds a subset of them to maximize the availability. This article reviews the state-of-the-art PAR schemes, addresses the analytical performance of a PAR estimator following a generalization of the Cramér–Rao Bound (CRB) for the RTK problem, and introduces Precision-Driven PAR (PD-PAR). The latter constitutes a new PAR scheme which employs the formal precision of the (potentially fixed) positioning solution as selection criteria for the subset of ambiguities to fix. Numerical simulations are used to showcase the performance of conventional FAR and FAR approaches, and the proposed PD-PAR against the generalized CRB associated with PAR problems. Real-data experimental analysis for a medium baseline complements the synthetic scenario. The results demonstrate that (i) the generalization for the RTK CRB constitutes a valid lower bound to assess the asymptotic behavior of PAR estimators, and (ii) the proposed PD-PAR technique outperforms existing FAR and PAR solutions as a non-recursive estimator for medium and long baselines.
more »
« less
Robust Filtering Techniques for RTK Positioning in Harsh Propagation Environments
Global navigation satellite systems (GNSSs) play a key role in intelligent transportation systems such as autonomous driving or unmanned systems navigation. In such applications, it is fundamental to ensure a reliable precise positioning solution able to operate in harsh propagation conditions such as urban environments and under multipath and other disturbances. Exploiting carrier phase observations allows for precise positioning solutions at the complexity cost of resolving integer phase ambiguities, a procedure that is particularly affected by non-nominal conditions. This limits the applicability of conventional filtering techniques in challenging scenarios, and new robust solutions must be accounted for. This contribution deals with real-time kinematic (RTK) positioning and the design of robust filtering solutions for the associated mixed integer- and real-valued estimation problem. Families of Kalman filter (KF) approaches based on robust statistics and variational inference are explored, such as the generalized M-based KF or the variational-based KF, aiming to mitigate the impact of outliers or non-nominal measurement behaviors. The performance assessment under harsh propagation conditions is realized using a simulated scenario and real data from a measurement campaign. The proposed robust filtering solutions are shown to offer excellent resilience against outlying observations, with the variational-based KF showcasing the overall best performance in terms of Gaussian efficiency and robustness.
more »
« less
- PAR ID:
- 10230648
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 1250
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Navigation problems are generally solved applying least-squares (LS) adjustments. Techniques based on LS can be shown to perform optimally when the system noise is Gaussian distributed and the parametric model is accurately known. Unfortunately, real world problems usually contain unexpectedly large errors, so-called outliers, that violate the noise model assumption, leading to a spoiled solution estimation. In this work, the framework of robust statistics is explored to provide robust solutions to the global navigation satellite systems (GNSS) single point positioning (SPP) problem. Considering that GNSS observables may be contaminated by erroneous measurements, we survey the most popular approaches for robust regression (M-, S-, and MM-estimators) and how they can be adapted into a general methodology for robust GNSS positioning. We provide both theoretical insights and validation over experimental datasets, which serves in discussing the robust methods in detail.more » « less
-
null (Ed.)Accurate precise positioning at millimeter wave frequencies is possible due to the large available bandwidth that permits precise on-the-fly time of flight measurements using conventional air interface standards. In addition, narrow antenna beamwidths may be used to determine the angles of arrival and departure of the multipath components between the base station and mobile users. By combining accurate temporal and angular information of multipath components with a 3- D map of the environment (that may be built by each user or downloaded a-priori), robust localization is possible, even in non-line-of-sight environments. In this work, we develop an accurate 3-D ray tracer for an indoor office environment and demonstrate how the fusion of angle of departure and time of flight information in concert with a 3-D map of a typical large office environment provides a mean accuracy of 12.6 cm in line-of-sight and 16.3 cm in non-line-of-sight, over 100 receiver distances ranging from 1.5 m to 24.5 m using a single base station. We show how increasing the number of base stations improves the average non-line-of-sight position location accuracy to 5.5 cm at 21 locations with a maximum propagation distance of 24.5 m. Index Terms—localization; positioning; position location; navigation; mmWave; 5G; ray tracing; site-specific propagation; map-basedmore » « less
-
null (Ed.)Channel state information (CSI)-based fingerprinting via neural networks (NNs) is a promising approach to enable accurate indoor and outdoor positioning of user equipments (UEs), even under challenging propagation conditions. In this paper, we propose a positioning pipeline for wireless LAN MIMO-OFDM systems which uses uplink CSI measurements obtained from one or more unsynchronized access points (APs). For each AP receiver, novel features are first extracted from the CSI that are robust to system impairments arising in real-world transceivers. These features are the inputs to a NN that extracts a probability map indicating the likelihood of a UE being at a given grid point. The NN output is then fused across multiple APs to provide a final position estimate. We provide experimental results with real-world indoor measurements under line-of-sight (LoS) and non-LoS propagation conditions for an 80 MHz bandwidth IEEE 802.11ac system using a two-antenna transmit UE and two AP receivers each with four antennas. Our approach is shown to achieve centimeter-level median distance error, an order of magnitude improvement over a conventional baseline.more » « less
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localizationmore » « less
An official website of the United States government

