skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: XPL-CF: Explainable Embeddings for Feature-based Collaborative Filtering
Collaborative filtering (CF) methods are making an impact on our daily lives in a wide range of applications, including recommender systems and personalization. Latent factor methods, e.g., matrix factorization (MF), have been the state-of-the-art in CF, however they lack interpretability and do not provide a straightforward explanation for their predictions. Explainability is gaining momentum in recommender systems for accountability, and because a good explanation can swing an undecided user. Most recent explainable recommendation methods require auxiliary data such as review text or item content on top of item ratings. In this paper, we address the case where no additional data are available and propose augmenting the classical MF framework for CF with a prior that encodes each user's embedding as a sparse linear combination of item embeddings, and vice versa for each item embedding. Our XPL-CF approach automatically reveals these user-item relationships, which underpin the latent factors and explain how the resulting recommendations are formed. We showcase the effectiveness of XPL-CF on real data from various application domains. We also evaluate the explainability of the user-item relationship obtained from XPL-CF through numeric evaluation and case study examples.  more » « less
Award ID(s):
1908070
PAR ID:
10357459
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
30th ACM International Conference on Information and Knowledge Management (CIKM)
Page Range / eLocation ID:
2847 to 2851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Implicit feedback is widely used in collaborative filtering methods for recommendation. It is well known that implicit feedback contains a large number of values that are missing not at random (MNAR); and the missing data is a mixture of negative and unknown feedback, making it difficult to learn users’ negative preferences. Recent studies modeled exposure, a latent missingness variable which indicates whether an item is exposed to a user, to give each missing entry a confidence of being negative feedback. However, these studies use static models and ignore the information in temporal dependencies among items, which seems to be an essential underlying factor to subsequent missingness. To model and exploit the dynamics of missingness, we propose a latent variable named “user intent” to govern the temporal changes of item missingness, and a hidden Markov model to represent such a process. The resulting framework captures the dynamic item missingness and incorporate it into matrix factorization (MF) for recommendation. We also explore two types of constraints to achieve a more compact and interpretable representation of user intents. Experiments on real-world datasets demonstrate the superiority of our method against state-of-the-art recommender systems. 
    more » « less
  2. Latent factor models have become a prevalent method in recommender systems, to predict users' preference on items based on the historical user feedback. Most of the existing methods, explicitly or implicitly, are built upon the first-order rating distance principle, which aims to minimize the difference between the estimated and real ratings. In this paper, we generalize such first-order rating distance principle and propose a new latent factor model (HoORaYs) for recommender systems. The core idea of the proposed method is to explore high-order rating distance, which aims to minimize not only (i) the difference between the estimated and real ratings of the same (user, item) pair (i.e., the first-order rating distance), but also (ii) the difference between the estimated and real rating difference of the same user across different items (i.e., the second-order rating distance). We formulate it as a regularized optimization problem, and propose an effective and scalable algorithm to solve it. Our analysis from the geometry and Bayesian perspectives indicate that by exploring the high-order rating distance, it helps to reduce the variance of the estimator, which in turns leads to better generalization performance (e.g., smaller prediction error). We evaluate the proposed method on four real-world data sets, two with explicit user feedback and the other two with implicit user feedback. Experimental results show that the proposed method consistently outperforms the state-of-the-art methods in terms of the prediction accuracy. 
    more » « less
  3. Explaining to users why some items are recommended is critical, as it can help users to make better decisions, increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable RS usually consider explanation as a side output of the recommendation model, which has two problems: (1) It is difficult to evaluate the produced explanations, because they are usually model-dependent, and (2) as a result, how the explanations impact the recommendation performance is less investigated. In this article, explaining recommendations is formulated as a ranking task and learned from data, similarly to item ranking for recommendation. This makes it possible for standard evaluation of explanations via ranking metrics (e.g., Normalized Discounted Cumulative Gain). Furthermore, this article extends traditional item ranking to an item–explanation joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals, e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the user-item-explanation data would be inevitably severer than that in traditional user–item interaction data, since not every user–item pair can be associated with all explanations. To mitigate this issue, this article proposes to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary relationships. Experiments on three large datasets verify the solution’s effectiveness on both explanation ranking and item recommendation. 
    more » « less
  4. Recommender systems predict users’ preferences over a large number of items by pooling similar information from other users and/or items in the presence of sparse observations. One major challenge is how to utilize user-item specific covariates and networks describing user-item interactions in a high-dimensional situation, for accurate personalized prediction. In this article, we propose a smooth neighborhood recommender in the framework of the latent factor models. A similarity kernel is utilized to borrow neighborhood information from continuous covariates over a user-item specific network, such as a user’s social network, where the grouping information defined by discrete covariates is also integrated through the network. Consequently, user-item specific information is built into the recommender to battle the ‘cold-start” issue in the absence of observations in collaborative and content- based filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least squares algorithm to achieve scalable computation, and establish asymptotic results for the proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we illustrate that the proposed method improves substantially over its competitors in simulated examples and real benchmark data–Last.fm music data. 
    more » « less
  5. Recommender systems predict users’ preferences over a large number of items by pooling similar information from other users and/or items in the presence of sparse observations. One major challenge is how to utilize user-item specific covariates and networks describing user-item interactions in a high-dimensional situation, for accurate personalized prediction. In this article, we propose a smooth neighborhood recommender in the framework of the latent factor models. A similarity kernel is utilized to borrow neighborhood information from continuous covariates over a user-item specific network, such as a user’s social network, where the grouping information defined by discrete covariates is also integrated through the network. Consequently, user-item specific information is built into the recommender to battle the ‘cold-start” issue in the absence of observations in collaborative and contentbased filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least squares algorithm to achieve scalable computation, and establish asymptotic results for the proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we illustrate that the proposed method improves substantially over its competitors in simulated examples and real benchmark data–Last.fm music data. 
    more » « less