skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging Anthropogenic Influences on the Southcentral Alaska Temperature and Precipitation Extremes and Related Fires in 2019
The late-season extreme fire activity in Southcentral Alaska during 2019 was highly unusual and consequential. Firefighting operations had to be extended by a month in 2019 due to the extreme conditions of hot summer temperature and prolonged drought. The ongoing fires created poor air quality in the region containing most of Alaska’s population, leading to substantial impacts to public health. Suppression costs totaled over $70 million for Southcentral Alaska. This study’s main goals are to place the 2019 season into historical context, provide an attribution analysis, and assess future changes in wildfire risk in the region. The primary tools are meteorological observations and climate model simulations from the NCAR CESM Large Ensemble (LENS). The 2019 fire season in Southcentral Alaska included the hottest and driest June–August season over the 1979–2019 period. The LENS simulation analysis suggests that the anthropogenic signal of increased fire risk had not yet emerged in 2019 because of the CESM’s internal variability, but that the anthropogenic signal will emerge by the 2040–2080 period. The effect of warming temperatures dominates the effect of enhanced precipitation in the trend towards increased fire risk.  more » « less
Award ID(s):
1757348 1636476 1830131
PAR ID:
10253409
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Date Published:
Journal Name:
Land
Volume:
10
Issue:
1
ISSN:
2073-445X
Page Range / eLocation ID:
82
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lightning is a key driver of wildfire activity in Alaska. Quantifying its historical variability and trends has been challenging because of changes in the observational network, but understanding historical and possible future changes in lightning activity is important for fire management planning. Dynamically downscaled reanalysis and global climate model (GCM) data were used to statistically assess lightning data in geographic zones used operationally by fire managers across Alaska. Convective precipitation was found to be a key predictor of weekly lightning activity through multiple regression analysis, along with additional atmospheric stability, moisture, and temperature predictor variables. Model-derived estimates of historical June–July lightning since 1979 showed increasing but lower-magnitude trends than the observed record, derived from the highly heterogeneous lightning sensor network, over the same period throughout interior Alaska. Two downscaled GCM projections estimate a doubling of lightning activity over the same June–July season and geographic region by the end of the twenty-first century. Such a substantial increase in lightning activity may have significant impacts on future wildfire activity in Alaska because of increased opportunities for ignitions, although the final outcome also depends on fire weather conditions and fuels. 
    more » « less
  2. null (Ed.)
    Understanding plant phenological change is of great concern in the context of global climate change. Phenological models can aid in understanding and predicting growing season changes and can be parameterized with gross primary production (GPP) estimated using the eddy covariance (EC) technique. This study used nine years of EC-derived GPP data from three mature subtropical longleaf pine forests in the southeastern United States with differing soil water holding capacity in combination with site-specific micrometeorological data to parameterize a photosynthesis-based phenological model. We evaluated how weather conditions and prescribed fire led to variation in the ecosystem phenological processes. The results suggest that soil water availability had an effect on phenology, and greater soil water availability was associated with a longer growing season (LOS). We also observed that prescribed fire, a common forest management activity in the region, had a limited impact on phenological processes. Dormant season fire had no significant effect on phenological processes by site, but we observed differences in the start of the growing season (SOS) between fire and non-fire years. Fire delayed SOS by 10 d ± 5 d (SE), and this effect was greater with higher soil water availability, extending SOS by 18 d on average. Fire was also associated with increased sensitivity of spring phenology to radiation and air temperature. We found that interannual climate change and periodic weather anomalies (flood, short-term drought, and long-term drought), controlled annual ecosystem phenological processes more than prescribed fire. When water availability increased following short-term summer drought, the growing season was extended. With future climate change, subtropical areas of the Southeastern US are expected to experience more frequent short-term droughts, which could shorten the region’s growing season and lead to a reduction in the longleaf pine ecosystem’s carbon sequestration capacity. 
    more » « less
  3. Abstract Increased Arctic air temperatures and evaporative fluxes have coincided with more frequent and destructive high‐latitude wildfires. Arctic fires impact ecosystems and people, especially at the community‐level by degrading air quality, destroying agriculture, and threatening life and property. Central Eastern Interior (CEI) Alaska is one such region that has recently experienced the effects of wildfire activity related to warming air temperatures. To improve our ability to identify fire weather events and assess their potential for extreme outbreaks at actionable lead times relevant to fire weather forecasters and managers, new metrics and approaches need to be established and applied toward understanding the physical mechanisms underlying such wildland fire characteristics. Our study uses a new, regional atmospheric circulation metric, the Alaska Blocking Index (ABI), to describe midtropospheric air pressure around Alaska, which is subsequently related to CEI fire weather conditions at the Predictive Service Area (PSA) scale in climatological and extreme events frameworks. Of note, during years of high fire activity, Build‐Up Index (BUI) values tend to be anomalously high during the duff and drought phases across the CEI PSAs, though comparatively lower BUI values are still associated with high fire activity in the Tanana Zone‐South (AK03S) PSA. Likewise, extreme BUI values are strongly tied to high ABI values and well‐defined upper‐air ridging circulation patterns in the duff and drought periods. The statistical skill of mean daily ABI values in the 6–10 day period preceding extreme duff period BUI values is modest (τ2 > 14%) in the Upper Yukon Valley (AK02) PSA, a hotbed of wildland fire activity. Extremes in ABI and CEI BUI often occur in tandem, yielding regional predictability of upper‐air weather patterns and extremes and underlying surface weather conditions, by statistical and/or dynamical forecast models, imperative for local community and governmental organizations to effectively manage and allocate Alaska's fire weather resources. 
    more » « less
  4. null (Ed.)
    There is an increased risk of future fire disturbances due to climate change and anthropogenic activity. These disturbances can impact soil moisture content and infiltration, which are important antecedent conditions for predicting rainfall–runoff processes in semi-arid regions. Yet these conditions are not well documented. This case study provides critical field measurements and information, which are needed to improve our understanding of mechanisms such as precipitation and temperature that lead to the variability of soil properties and processes in urban and burned landscapes. In June 2018, a fire burned a portion of the riparian zone in Alvarado Creek, an urban tributary of the San Diego River in California, United States. This fire provided an opportunity to observe soil moisture content and infiltration for one year after the fire. Three transects (one burned and two unburned) were monitored periodically to evaluate the complex spatial and temporal dynamics of soil moisture and infiltration patterns. Average dry season soil moisture content was less than five percent volume water content (%VWC) for all transects, and the burned transect exhibited the lowest %VWC during the wet season. Infiltration rates displayed a high degree of spatial and temporal variability. However, the location with the highest burn severity had the lowest average infiltration rate. The observed differences between the burned and unburned transects indicate that the fire altered hydrologic processes of the landscape and reduced the ability of the soil to retain water during the wet season. This research provides the first high-resolution soil moisture and infiltration field analysis of an urban fire-disturbed stream in southern California and a method to characterize post-fire hydrologic conditions for rainfall–runoff processes. 
    more » « less
  5. Abstract In the past decade, two large marine heatwaves (MHWs) formed in the northeast Pacific near Ocean Station Papa (OSP), one of the oldest oceanic time series stations. Physical, biogeochemical, and biological parameters observed at OSP from 2013 to 2020 are used to assess ocean response and potential impacts on marine life from the 2019 northeast Pacific MHW. The 2019 MHW reached peak surface and subsurface temperature anomalies in the summertime and had both coastal, impacting fisheries, and offshore consequences that could potentially affect multiple trophic levels in the Gulf of Alaska. In the Gulf of Alaska, the 2019 MHW was preceded by calm and stratified upper ocean conditions, which preconditioned the enhanced surface warming in late spring and early summer. The MHW coincided with lower dissolved inorganic carbon and higher pH of surface waters relative to the 2013–2020 period. A spike in the summertime chlorophyll followed by a decrease in surface macronutrients suggests increased productivity in the well‐lit stratified upper ocean during summer 2019. More blue whale calls were recorded at OSP in 2019 compared to the prior year. This study shows how the utility of long‐term, continuous oceanographic data sets and analysis with an interdisciplinary lens is necessary to understand the potential impact of MHWs on marine ecosystems. 
    more » « less