skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Motivating High Performance Serverless Workloads
The historical motivation for serverless comes from internet-of-things, smartphone client server, and the objective of simplifying programming (no provisioning) and scale-down (pay-for-use). These applications are generally low-performance best-effort. However, the serverless model enables flexible software architectures suitable for a wide range of applications that demand high-performance and guaranteed performance. We have studied three such applications - scientific data streaming, virtual/augmented reality, and document annotation. We describe how each can be cast in a serverless software architecture and how the application performance requirements translate into high performance requirements (invocation rate, low and predictable latency) for the underlying serverless system implementation. These applications can require invocations rates as high as millions per second (40 MHz) and latency deadlines below a microsecond (300 ns), and furthermore require performance predictability. All of these capabilities are far in excess of today's commercial serverless offerings and represent interesting research challenges.  more » « less
Award ID(s):
1901466
PAR ID:
10253547
Author(s) / Creator(s):
; ;
Editor(s):
Foster, Ian; Chard, Kyle; Babuji, Yadu
Date Published:
Journal Name:
THE 1ST WORKSHOP ON HIGH PERFORMANCE SERVERLESS COMPUTING
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edge cloud solutions that bring the cloud closer to the sensors can be very useful to meet the low latency requirements of many Internet-of-Things (IoT) applications. However, IoT traffic can also be intermittent, so running applications constantly can be wasteful. Therefore, having a serverless edge cloud that is responsive and provides low-latency features is a very attractive option for a resource and cost-efficient IoT application environment.In this paper, we discuss the key components needed to support IoT traffic in the serverless edge cloud and identify the critical challenges that make it difficult to directly use existing serverless solutions such as Knative, for IoT applications. These include overhead from heavyweight components for managing the overall system and software adaptors for communication protocol translation used in off-the-shelf serverless platforms that are designed for large-scale centralized clouds. The latency imposed by ‘cold start’ is a further deterrent.To address these challenges we redesign several components of the Knative serverless framework. We use a streamlined protocol adaptor to leverage the MQTT IoT protocol in our serverless framework for IoT event processing. We also create a novel, event-driven proxy based on the extended Berkeley Packet Filter (eBPF), to replace the regular heavyweight Knative queue proxy. Our preliminary experimental results show that the event-driven proxy is a suitable replacement for the queue proxy in an IoT serverless environment and results in lower CPU usage and a higher request throughput. 
    more » « less
  2. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as “exactly once” guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  3. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as ``exactly once'' guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  4. Serverless computing allows customers to submit their jobs to the cloud for execution, with the resource provisioning being taken care of by the cloud provider. Serverless functions are often short-lived and have modest resource requirements, thereby presenting an opportunity to improve server utilization by colocating with latency-sensitive customer workloads. This paper presents ServerMore, a server-level resource manager that opportunistically colocates customer serverless jobs with serverful customer VMs. ServerMore dynamically regulates the CPU, memory bandwidth, and LLC resources on the server to ensure that the colocation between serverful and serverless workloads does not impact application tail latencies. By selectively admitting serverless functions and inferring the performance of black-box serverful workloads, ServerMore improves resource utilization on average by 35.9% to 245% compared to prior works; while having a minimal impact on the latency of both serverful applications and serverless functions. 
    more » « less
  5. Serverless computing services are offered by major cloud service providers such as Google Cloud Platform, Amazon Web Services, and Microsoft Azure. The primary purpose of the services is to offer efficiency and scalability in modern software development and IT operations while reducing overall costs and operational complexity. However, prospective customers often question which serverless service will best meet their organizational and business needs. This study analyzed the features, usability, and performance of three serverless cloud computing platforms: Google Cloud’s Cloud Run, Amazon Web Service’s App Runner, and Microsoft Azure’s Container Apps. The analysis was conducted with a containerized mobile application designed to track real-time bus locations for San Antonio public buses on specific routes and provide estimated arrival times for selected bus stops. The study evaluated various system-related features, including service configuration, pricing, and memory and CPU capacity, along with performance metrics such as container latency, distance matrix API response time, and CPU utilization for each service. The results of the analysis revealed that Google’s Cloud Run demonstrated better performance and usability than AWS’s App Runner and Microsoft Azure’s Container Apps. Cloud Run exhibited lower latency and faster response time for distance matrix queries. These findings provide valuable insights for selecting an appropriate serverless cloud service for similar containerized web applications. 
    more » « less