skip to main content


Title: Battery Characterization via Eddy-Current Imaging with Nitrogen-Vacancy Centers in Diamond
Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries using noninvasive detection. We demonstrate a microwave-free alternating current (AC) magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between nitrogen-vacancy (NV) centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructively image solid-state batteries. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolution is μμμ360μm. The maximum magnetic field and phase shift generated by the battery at the modulation frequency of 5 kHz are estimated as 0.04 mT and 0.03 rad respectively.  more » « less
Award ID(s):
1804723
NSF-PAR ID:
10274623
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
11
Issue:
7
ISSN:
2076-3417
Page Range / eLocation ID:
3069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Local characterization of the properties and performances of miniaturized magnetic devices is a prerequisite for advancing present on-chip spintronic technologies. Utilizing nitrogen-vacancy (NV) centers in diamond, here we report quantum sensing of spin wave modes and magnetic stray field environment of patterned micrometer-scale Y3Fe5O12 (YIG) disks at the submicrometer length scale. Taking advantage of wide-field magnetometry techniques using NV ensembles, we map the spatially dependent NV electron spin resonances and Rabi oscillations in response to local variations of the stray fields emanating from a proximal YIG pattern. Our experimental data are in excellent agreement with theoretical predictions and micromagnetic simulation results, highlighting the significant opportunities offered by NV centers for probing the local magnetic properties of functional solid-state devices. The presented quantum sensing strategy may also find applications in the development of next-generation spintronic circuits with improved scalability and density. 
    more » « less
  2. null (Ed.)
    Abstract Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty in locally addressing the quantum spin states of individual NV spins in a scalable, energy-efficient manner. Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems. By utilizing electrically generated spin currents, we are able to achieve efficient tuning of magnetic damping and the amplitude of the dipole fields generated by a micrometer-sized resonant magnet, enabling electrical control of the Rabi oscillation frequency of NV spins. Our results highlight the potential of NV centers in designing functional hybrid solid-state systems for next-generation quantum-information technologies. The demonstrated coupling between the NV centers and the propagating spin waves harbored by a magnetic insulator further points to the possibility to establish macroscale entanglement between distant spin qubits. 
    more » « less
  3. Color-center–hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center–assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition—where the P1 Zeeman splitting matches one of the NV spin transitions—we demonstrate efficient microwave-free 13 C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13 C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal. 
    more » « less
  4. Solid-state laser refrigeration of semiconductors remains an outstanding experimental challenge. In this work, we show that, following excitation with a laser wavelength of 532 nm, bulk diamond crystals doped with H3 centers both emit efficient up-conversion (anti-Stokes) photoluminescence and also show significantly reduced photothermal heating relative to crystals doped with nitrogen–vacancy (NV) centers. The H3 center in diamond is a highly photostable defect that avoids bleaching at high laser irradiances of 10–70 MW/cm[Formula: see text] and has been shown to exhibit laser action, tunable over the visible band of 500–600 nm. The observed reduction of photothermal heating arises due to a decrease in the concentration of absorbing point defects, including NV-centers. These results encourage future exploration of techniques for H3 enrichment in diamonds under high-pressure, high-temperature conditions for the simultaneous anti-Stokes fluorescence cooling and radiation balanced lasing in semiconductor materials. Reducing photothermal heating in diamond through the formation of H3 centers also opens up new possibilities in quantum sensing via optically detected magnetic resonance spectroscopy at ambient conditions. 
    more » « less
  5. Novel noncollinear antiferromagnets with spontaneous time-reversal symmetry breaking, nontrivial band topology, and unconventional transport properties have received immense research interest over the past decade due to their rich physics and enormous promise in technological applications. One of the central focuses in this emerging field is exploring the relationship between the microscopic magnetic structure and exotic material properties. Here, the nanoscale imaging of both spin-orbit-torque-induced deterministic magnetic switching and chiral spin rotation in noncollinear antiferromagnet Mn3Sn films using nitrogen-vacancy (NV) centers is reported. Direct evidence of the off-resonance dipole-dipole coupling between the spin dynamics in Mn3Sn and proximate NV centers is also demonstrated with NV relaxometry measurements. These results demonstrate the unique capabilities of NV centers in accessing the local information of the magnetic order and dynamics in these emergent quantum materials and suggest new opportunities for investigating the interplay between topology and magnetism in a broad range of topological magnets. 
    more » « less