skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Free Energy-Based Computational Methods for the Study of Protein-Peptide Binding Equilibria
This chapter discusses the theory and application of physics-based free energy methods to estimate protein-peptide binding free energies. It presents a statistical mechanics formulation of molecular binding, which is then specialized in three methodologies: (i) alchemical absolute binding free energy estimation with implicit solvation, (ii) alchemical relative binding free energy estimation with explicit solvation, and (iii) potential of mean force binding free energy estimation. Case studies of protein-peptide binding application taken from the recent literature are discussed for each method.  more » « less
Award ID(s):
1750511
PAR ID:
10275774
Author(s) / Creator(s):
Editor(s):
Simonson, Thomas
Date Published:
Journal Name:
Methods in molecular biology
Volume:
Computational Peptide Science
ISSN:
1064-3745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Protein–protein binding is fundamental to most biological processes. It is important to be able to use computation to accurately estimate the change in protein–protein binding free energy due to mutations in order to answer biological questions that would be experimentally challenging, laborious, or time-consuming. Although nonrigorous free-energy methods are faster, rigorous alchemical molecular dynamics-based methods are considerably more accurate and are becoming more feasible with the advancement of computer hardware and molecular simulation software. Even with sufficient computational resources, there are still major challenges to using alchemical free-energy methods for protein–protein complexes, such as generating hybrid structures and topologies, maintaining a neutral net charge of the system when there is a charge-changing mutation, and setting up the simulation. In the current study, we have used the pmx package to generate hybrid structures and topologies, and a double-system/single-box approach to maintain the net charge of the system. To test the approach, we predicted relative binding affinities for two protein–protein complexes using a nonequilibrium alchemical method based on the Crooks fluctuation theorem and compared the results with experimental values. The method correctly identified stabilizing from destabilizing mutations for a small protein–protein complex, and a larger, more challenging antibody complex. Strong correlations were obtained between predicted and experimental relative binding affinities for both protein–protein systems. 
    more » « less
  2. The Alchemical Transfer Method (ATM) is herein validated against the relative binding free energies of a diverse set of protein-ligand complexes. We employed a streamlined setup workflow, a bespoke force field, and the AToM-OpenMM software to compute the relative binding free energies (RBFE) of the benchmark set prepared by Schindler and collaborators at Merck KGaA. This benchmark set includes examples of standard small R-group ligand modifications as well as more challenging scenarios, such as large R-group changes, scaffold hopping, formal charge changes, and charge-shifting transformations. The novel coordinate perturbation scheme and a dual-topology approach of ATM address some of the challenges of single-topology alchemical relative binding free energy methods. Specifically, ATM eliminates the need for splitting electrostatic and Lennard-Jones interactions, atom mapping, defining ligand regions, and post-corrections for charge-changing perturbations. Thus, ATM is simpler and more broadly applicable than conventional alchemical methods, especially for scaffold-hopping and charge-changing transformations. Here, we performed well over 500 relative binding free energy calculations for eight protein targets and found that ATM achieves accuracy comparable to existing state-of-the-art methods, albeit with larger statistical fluctuations. We discuss insights into specific strengths and weaknesses of the ATM method that will inform future deployments. This study confirms that ATM is applicable as a production tool for relative binding free energy (RBFE) predictions across a wide range of perturbation types within a unified, open-source framework. 
    more » « less
  3. The accurate prediction of protein-ligand binding affinities is crucial for drug discovery. Alchemical free energy calculations have become a popular tool for this purpose. However, the accuracy and reliability of these methods can vary depending on the methodology. In this study, we evaluate the performance of a relative binding free energy protocol based on the alchemical transfer method (ATM), a novel approach based on a coordinate transformation that swaps the positions of two ligands. The results show that ATM matches the performance of more complex free energy perturbation (FEP) methods in terms of Pearson correlation, but with marginally higher mean absolute errors. This study shows that the ATM method is competitive compared to more traditional methods in speed and accuracy and offers the advantage of being applicable with any potential energy function. 
    more » « less
  4. Performing alchemical transformations, in which one molecular system is nonphysically changed to another system, is a popular approach adopted in performing free energy calculations associated with various biophysical processes, such as protein–ligand binding or the transfer of a molecule between environments. While the sampling of alchemical intermediate states in either parallel (e.g., Hamiltonian replica exchange) or serial manner (e.g., expanded ensemble) can bridge the high-probability regions in the configurational space between two end states of interest, alchemical methods can fail in scenarios where the most important slow degrees of freedom in the configurational space are, in large part, orthogonal to the alchemical variable, or if the system gets trapped in a deep basin extending in both the configurational and alchemical space. To alleviate these issues, we propose to use alchemical variables as an additional dimension in metadynamics, making it possible to both sample collective variables and to enhance sampling in free energy calculations simultaneously. In this study, we validate our implementation of “alchemical metadynamics” in PLUMED with test systems and alchemical processes with varying complexities and dimensionalities of collective variable space, including the interconversion between the torsional metastable states of a toy system and the methylation of a nucleoside both in the isolated form and in a duplex. We show that multidimensional alchemical metadynamics can address the challenges mentioned above and further accelerate sampling by introducing configurational collective variables. The method can trivially be combined with other metadynamics-based algorithms implemented in PLUMED. The necessary PLUMED code changes have already been released for general use in PLUMED 2.8. 
    more » « less
  5. Abstract Computationally modeling how mutations affect protein–protein binding not only helps uncover the biophysics of protein interfaces, but also enables the redesign and optimization of protein interactions. Traditional high‐throughput methods for estimating binding free energy changes are currently limited to mutations directly at the interface due to difficulties in accurately modeling how long‐distance mutations propagate their effects through the protein structure. However, the modeling and design of such mutations is of substantial interest as it allows for greater control and flexibility in protein design applications. We have developed a method that combines high‐throughput Rosetta‐based side‐chain optimization with conformational sampling using classical molecular dynamics simulations, finding significant improvements in our ability to accurately predict long‐distance mutational perturbations to protein binding. Our approach uses an analytical framework grounded in alchemical free energy calculations while enabling exploration of a vastly larger sequence space. When comparing to experimental data, we find that our method can predict internal long‐distance mutational perturbations with a level of accuracy similar to that of traditional methods in predicting the effects of mutations at the protein–protein interface. This work represents a new and generalizable approach to optimize protein free energy landscapes for desired biological functions. 
    more » « less