skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges to the Reforestation Pipeline in the United States
Large-scale global reforestation goals have been proposed to help mitigate climate change and provide other ecosystem services. To explore reforestation potential in the United States, we used GIS analyses, surveys of nursery managers and foresters, and literature synthesis to assess the opportunities and challenges associated with meeting proposed reforestation goals. We considered a scenario where 26 million hectares (64 million acres) of natural and agricultural lands are reforested by 2040 with 30 billion trees at an estimated cost of $33 ($24–$53) billion USD. Cost per hectare will vary by region, site conditions, and other factors. This scenario would require increasing the number of tree seedlings produced each year by 1.7 billion, a 2.3-fold increase over current nursery production levels. Additional investment (not included in the reforestation cost estimate) will be needed to expand capacity for seed collection, seedling production, workforce development, and improvements in pre- and post-planting practices. Achieving this scenario will require public support for investing in these activities and incentives for landowners.  more » « less
Award ID(s):
1633831
PAR ID:
10278861
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Forests and Global Change
Volume:
4
ISSN:
2624-893X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meeting end-of-century global warming targets requires aggressive action on multiple fronts. Recent reports note the futility of addressing mitigation goals without fully engaging the agricultural sector, yet no available assessments combine both nature-based solutions (reforestation, grassland and wetland protection, and agricultural practice change) and cellulosic bioenergy for a single geographic region. Collectively, these solutions might offer a suite of climate, biodiversity, and other benefits greater than either alone. Nature-based solutions are largely constrained by the duration of carbon accrual in soils and forest biomass; each of these carbon pools will eventually saturate. Bioenergy solutions can last indefinitely but carry significant environmental risk if carelessly deployed. We detail a simplified scenario for the U.S. that illustrates the benefits of combining approaches. We assign a portion of non-forested former cropland to bioenergy sufficient to meet projected mid-century transportation needs, with the remainder assigned to nature-based solutions such as reforestation. Bottom-up mitigation potentials for the aggregate contributions of crop, grazing, forest, and bioenergy lands are assessed by including in a Monte Carlo model conservative ranges for cost-effective local mitigation capacities, together with ranges for (a) areal extents that avoid double counting and include realistic adoption rates and (b) the projected duration of different carbon sinks. The projected duration illustrates the net effect of eventually saturating soil carbon pools in the case of most strategies, and additionally saturating biomass carbon pools in the case of reforestation. Results show a conservative end-of-century mitigation capacity of 110 (57 – 178) Gt CO2e for the U.S., ~50% higher than existing estimates that prioritize nature-based or bioenergy solutions separately. Further research is needed to shrink uncertainties but there is sufficient confidence in the general magnitude and direction of a combined approach to plan for deployment now. The dataset is a synthesis of literature values selected based on criteria described in the parent paper’s narrative. The files can be opened in Microsoft Excel or any other spreadsheet that can load Excel-format files. 
    more » « less
  2. Abstract Climate change has adverse impacts on Arctic natural ecosystems and threatens northern communities by disrupting subsistence practices, limiting accessibility, and putting built infrastructure at risk. In this paper, we analyze spatial patterns of permafrost degradation and associated risks to built infrastructure due to loss of bearing capacity and thaw subsidence in permafrost regions of the Arctic. Using a subset of three Coupled Model Intercomparison Project 6 models under SSP245 and 585 scenarios we estimated changes in permafrost bearing capacity and ground subsidence between two reference decades: 2015–2024 and 2055–2064. Using publicly available infrastructure databases we identified roads, railways, airport runways, and buildings at risk of permafrost degradation and estimated country-specific costs associated with damage to infrastructure. The results show that under the SSP245 scenario 29% of roads, 23% of railroads, and 11% of buildings will be affected by permafrost degradation, costing $182 billion to the Arctic states by mid-century. Under the SSP585 scenario, 44% of roads, 34% of railroads, and 17% of buildings will be affected with estimated cost of $276 billion, with airport runways adding an additional $0.5 billion. Russia is expected to have the highest burden of costs, ranging from $115 to $169 billion depending on the scenario. Limiting global greenhouse gas emissions has the potential to significantly decrease the costs of projected damages in Arctic countries, especially in Russia. The approach presented in this study underscores the substantial impacts of climate change on infrastructure and can assist to develop adaptation and mitigation strategies in Arctic states. 
    more » « less
  3. null (Ed.)
    The expectation of people and futurists is that all respectable cities will become Smart Cities in the near future. Two main barriers stand in the way of the evolution of cities. First is cost, the transformation into a smart city is expensive (e.g., between $30 Million and $40 Billion) and only a few cities are able to obtain the resources required for upgrades. Second, many citizens equate the data collection and surveillance of smart city technology with aggressive infringements on privacy. In this paper, we describe how citizens, city planners, and companies can develop smart cities that do not require crippling loans and are respectful of privacy. 
    more » « less
  4. Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y −1 . Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. 
    more » « less
  5. In the 2021 Infrastructure Investment and Jobs Act (IIJA) and the 2022 Inflation Reduction Act (IRA), the United States (U.S.) Congress placed a major bet on the importance of household actions, and the incentives for these actions may yield disproportionately large emissions reductions. Modeling estimates from Rapid Energy Policy Evaluation and Analysis Toolkit (REPEAT) suggest that the IRA's $331 billion investment can reduce carbon emissions by as much as 4% below a 2005 baseline by 2030, assuming a low-friction economic environment. To evaluate the role of household actions, we use a two-part method: 1) Policy analyses of the IRA and IIJA to identify household incentives; 2) Secondary data analysis of REPEAT's policy models to identify the potential for emissions reductions associated with household action. We find that $39 billion, or 12% of climate and energy funds in the IRA and $4.3 billion or 5.7% of clean energy and power funds in the IIJA, target voluntary household actions, and that these actions contribute 40% of the cumulative emissions reductions under the IRA and IIJA, assuming a mid-range scenario for uptake. The importance of household actions to achieving IRA and IIJA's emissions reduction goals suggests that actual impacts will likely vary by behavioral plasticity, and that program design should reflect social and behavioral science insights. 
    more » « less