skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Multitask Bandit Learning Through Heterogeneous Feedback Aggregation
In many real-world applications, multiple agents seek to learn how to perform highly related yet slightly different tasks in an online bandit learning protocol. We formulate this problem as the ϵ-multi-player multi-armed bandit problem, in which a set of players concurrently interact with a set of arms, and for each arm, the reward distributions for all players are similar but not necessarily identical. We develop an upper confidence bound-based algorithm, RobustAgg(ϵ), that adaptively aggregates rewards collected by different players. In the setting where an upper bound on the pairwise dissimilarities of reward distributions between players is known, we achieve instance-dependent regret guarantees that depend on the amenability of information sharing across players. We complement these upper bounds with nearly matching lower bounds. In the setting where pairwise dissimilarities are unknown, we provide a lower bound, as well as an algorithm that trades off minimax regret guarantees for adaptivity to unknown similarity structure.  more » « less
Award ID(s):
1915734 1935500
NSF-PAR ID:
10285171
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate robust data aggregation in a multi-agent online learning setting. In reality, multiple online learning agents are often deployed to perform similar tasks and receive similar feedback. We study how agents can improve their collective performance by sharing information among each other. In this paper, we formulate the ε-multi-player multi-armed bandit problem, in which a set of M players that have similar reward distributions for each arm play concurrently. We develop an upper confidence bound-based algorithm that adaptively aggregates rewards collected by different players. To our best knowledge, we are the first to develop such a scheme in a multi-player bandit learning setting. We show that under the assumption that pairwise distances between the means of the player-dependent distributions for each arm are small, we improve the (collective) regret bound by nearly a factor of M , in comparison with a baseline algorithm in which the players learn individually using the UCB-1 algorithm (Auer et al., 2002). Our algorithm also exhibits a fallback guarantee, namely, if our task similarity assumption fails to hold, our algorithm still has a performance guarantee that cannot be worse than the baseline by a constant factor. Empirically, we validate our algorithm on synthetic data. 
    more » « less
  2. Banerjee, Arindam ; Fukumizu, Kenji (Ed.)
    We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies, whose expected cumulative reward over the course of multiple rounds is maximum, and each one of them has an expected cost below a certain threshold. We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB), and prove a sublinear bound on its regret that is inversely proportional to the difference between the constraint threshold and the cost of a known feasible action. Our algorithm balances exploration and constraint satisfaction using a novel idea that scales the radii of the reward and cost confidence sets with different scaling factors. We further specialize our results to multi-armed bandits and propose a computationally efficient algorithm for this setting and prove a a regret bound that is better than simply casting multi-armed bandits as an instance of linear bandits and using the regret bound of OPLB. We also prove a lower-bound for the problem studied in the paper and provide simulations to validate our theoretical results. Finally, we show how our algorithm and analysis can be extended to multiple constraints and to the case when the cost of the feasible action is unknown. 
    more » « less
  3. We consider the bandit problem of selecting K out of N arms at each time step. The joint reward can be a non-linear function of the rewards of the selected individual arms. The direct use of a multi-armed bandit algorithm requires choosing among all possible combinations, making the action space large. To simplify the problem, existing works on combinatorial bandits typically assume feedback as a linear function of individual rewards. In this paper, we prove the lower bound for top-K subset selection with bandit feedback with possibly correlated rewards. We present a novel algorithm for the combinatorial setting without using individual arm feedback or requiring linearity of the reward function. Additionally, our algorithm works on correlated rewards of individual arms. Our algorithm, aDaptive Accept RejecT (DART), sequentially finds good arms and eliminates bad arms based on confidence bounds. DART is computationally efficient and uses storage linear in N. Further, DART achieves a regret bound of Õ(K√KNT) for a time horizon T, which matches the lower bound in bandit feedback up to a factor of √log 2NT. When applied to the problem of cross-selling optimization and maximizing the mean of individual rewards, the performance of the proposed algorithm surpasses that of state-of-the-art algorithms. We also show that DART significantly outperforms existing methods for both linear and non-linear joint reward environments. 
    more » « less
  4. arXiv:2402.05300v2 (Ed.)
    This paper considers a multi-player resource-sharing game with a fair reward allocation model. Multiple players choose from a collection of resources. Each resource brings a random reward equally divided among the players who choose it. We consider two settings. The first setting is a one-slot game where the mean rewards of the resources are known to all the players, and the objective of player 1 is to maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions. These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online setting, where the game is played over a finite time horizon, where the mean rewards are unknown to the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the worst-case regret of the first player using the feedback received. 
    more » « less
  5. We develop provably efficient reinforcement learning algorithms for two-player zero-sum finite-horizon Markov games with simultaneous moves. To incorporate function approximation, we consider a family of Markov games where the reward function and transition kernel possess a linear structure. Both the offline and online settings of the problems are considered. In the offline setting, we control both players and aim to find the Nash equilibrium by minimizing the duality gap. In the online setting, we control a single player playing against an arbitrary opponent and aim to minimize the regret. For both settings, we propose an optimistic variant of the least-squares minimax value iteration algorithm. We show that our algorithm is computationally efficient and provably achieves an [Formula: see text] upper bound on the duality gap and regret, where d is the linear dimension, H the horizon and T the total number of timesteps. Our results do not require additional assumptions on the sampling model. Our setting requires overcoming several new challenges that are absent in Markov decision processes or turn-based Markov games. In particular, to achieve optimism with simultaneous moves, we construct both upper and lower confidence bounds of the value function, and then compute the optimistic policy by solving a general-sum matrix game with these bounds as the payoff matrices. As finding the Nash equilibrium of a general-sum game is computationally hard, our algorithm instead solves for a coarse correlated equilibrium (CCE), which can be obtained efficiently. To our best knowledge, such a CCE-based scheme for optimism has not appeared in the literature and might be of interest in its own right. 
    more » « less