skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust Monocular Edge Visual Odometry through Coarse-to-Fine Data Association
This work describes a monocular visual odometry framework, which exploits the best attributes of edge features for illumination-robust camera tracking, while at the same time ameliorating the performance degradation of edge mapping. In the front-end, an ICP-based edge registration provides robust motion estimation and coarse data association under lighting changes. In the back-end, a novel edge-guided data association pipeline searches for the best photometrically matched points along geometrically possible edges through template matching, so that the matches can be further refined in later bundle adjustment. The core of our proposed data association strategy lies in a point-to-edge geometric uncertainty analysis, which analytically derives (1) a probabilistic search length formula that significantly reduces the search space and (2) a geometric confidence metric for mapping degradation detection based on the predicted depth uncertainty. Moreover, a match confidence based patch size adaption strategy is integrated into our pipeline to reduce matching ambiguity. We present extensive analysis and evaluation of our proposed system on synthetic and real- world benchmark datasets under the influence of illumination changes and large camera motions, where our proposed system outperforms current state-of-art algorithms.  more » « less
Award ID(s):
1816138
PAR ID:
10287873
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Intelligent Robots and Systems
Page Range / eLocation ID:
4923 to 4929
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Visual localization, the task of determining the position and orientation of a camera, typically involves three core components: offline construction of a keyframe database, efficient online keyframes retrieval, and robust local feature matching. However, significant challenges arise when there are large viewpoint disparities between the query view and the database, such as attempting localization in a corridor previously build from an opposing direction. Intuitively, this issue can be addressed by synthesizing a set of virtual keyframes that cover all viewpoints. However, existing methods for synthesizing novel views to assist localization often fail to ensure geometric accuracy under large viewpoint changes. In this paper, we introduce a confidence-aware geometric prior into 2D Gaussian splatting to ensure the geometric accuracy of the scene. Then we can render novel views through the mesh with clear structures and accurate geometry, even under significant viewpoint changes, enabling the synthesis of a comprehensive set of virtual keyframes. Incorporating this geometry-preserving virtual keyframe database into the localization pipeline significantly enhances the robustness of visual localization. 
    more » « less
  2. null (Ed.)
    Robust estimation of camera motion under the presence of outlier noise is a fundamental problem in robotics and computer vision. Despite existing efforts that focus on detecting motion and scene degeneracies, the best existing approach that builds on Random Consensus Sampling (RANSAC) still has non-negligible failure rate. Since a single failure canlead to the failure of the entire visual simultaneous localization and mapping, it is important to further improve the robust estimation algorithm. We propose a new robust camera motion estimator (RCME) by incorporating two main changes: a model-sample consistency test at the model instantiation stepand an inlier set quality test that verifies model-inlier consistency using differential entropy. We have implemented our RCME algorithm and tested it under many public datasets. The results have shown a consistent reduction in failure rate when comparing to the RANSAC-based Gold Standard approach and two recent variations of RANSAC methods. 
    more » « less
  3. Image restoration aims to recover a clean image given a noisy image. It has long been a topic of interest for researchers in imaging, optical science and computer vision. As the imaging environment becomes more and more deteriorated, the problem becomes more challenging. Several computational approaches, ranging from statistical to deep learning, have been proposed over the years to tackle this problem. The deep learning-based approaches provided promising image restoration results, but it’s purely data driven and the requirement of large datasets (paired or unpaired) for training might demean its utility for certain physical problems. Recently, physics informed image restoration techniques have gained importance due to their ability to enhance performance, infer some sense of the degradation process and its potential to quantify the uncertainty in the prediction results. In this paper, we propose a physics informed deep learning approach with simultaneous parameter estimation using 3D integral imaging and Bayesian neural network (BNN). An image-image mapping architecture is first pretrained to generate a clean image from the degraded image, which is then utilized for simultaneous training with Bayesian neural network for simultaneous parameter estimation. For the network training, simulated data using the physical model has been utilized instead of actual degraded data. The proposed approach has been tested experimentally under degradations such as low illumination and partial occlusion. The recovery results are promising despite training from a simulated dataset. We have tested the performance of the approach under varying levels of illumination condition. Additionally, the proposed approach also has been analyzed against corresponding 2D imaging-based approach. The results suggest significant improvements compared to 2D even training under similar datasets. Also, the parameter estimation results demonstrate the utility of the approach in estimating the degradation parameter in addition to image restoration under the experimental conditions considered. 
    more » « less
  4. null (Ed.)
    We present PhySG, an end-to-end inverse rendering pipeline that includes a fully differentiable renderer, and can reconstruct geometry, materials, and illumination from scratch from a set of images. Our framework represents specular BRDFs and environmental illumination using mix- tures of spherical Gaussians, and represents geometry as a signed distance function parameterized as a Multi-Layer Perceptron. The use of spherical Gaussians allows us to efficiently solve for approximate light transport, and our method works on scenes with challenging non-Lambertian reflectance captured under natural, static illumination. We demonstrate, with both synthetic and real data, that our re- constructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination. 
    more » « less
  5. Robust feature matching forms the backbone for most Visual Simultaneous Localization and Mapping (vSLAM), visual odometry, 3D reconstruction, and Structure from Motion (SfM) algorithms. However, recovering feature matches from texture-poor scenes is a major challenge and still remains an open area of research. In this paper, we present a Stereo Visual Odometry (StereoVO) technique based on point and line features which uses a novel feature-matching mechanism based on an Attention Graph Neural Network that is designed to perform well even under adverse weather conditions such as fog, haze, rain, and snow, and dynamic lighting conditions such as nighttime illumination and glare scenarios. We perform experiments on multiple real and synthetic datasets to validate our method's ability to perform StereoVO under low-visibility weather and lighting conditions through robust point and line matches. The results demonstrate that our method achieves more line feature matches than state-of-the-art line-matching algorithms, which when complemented with point feature matches perform consistently well in adverse weather and dynamic lighting conditions. 
    more » « less