skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stereo Visual Odometry with Deep Learning-Based Point and Line Feature Matching Using an Attention Graph Neural Network
Robust feature matching forms the backbone for most Visual Simultaneous Localization and Mapping (vSLAM), visual odometry, 3D reconstruction, and Structure from Motion (SfM) algorithms. However, recovering feature matches from texture-poor scenes is a major challenge and still remains an open area of research. In this paper, we present a Stereo Visual Odometry (StereoVO) technique based on point and line features which uses a novel feature-matching mechanism based on an Attention Graph Neural Network that is designed to perform well even under adverse weather conditions such as fog, haze, rain, and snow, and dynamic lighting conditions such as nighttime illumination and glare scenarios. We perform experiments on multiple real and synthetic datasets to validate our method's ability to perform StereoVO under low-visibility weather and lighting conditions through robust point and line matches. The results demonstrate that our method achieves more line feature matches than state-of-the-art line-matching algorithms, which when complemented with point feature matches perform consistently well in adverse weather and dynamic lighting conditions.  more » « less
Award ID(s):
1828010
PAR ID:
10514488
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN:
978-1-6654-9190-7
Page Range / eLocation ID:
3491 to 3498
Format(s):
Medium: X
Location:
Detroit, MI, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work describes a monocular visual odometry framework, which exploits the best attributes of edge features for illumination-robust camera tracking, while at the same time ameliorating the performance degradation of edge mapping. In the front-end, an ICP-based edge registration provides robust motion estimation and coarse data association under lighting changes. In the back-end, a novel edge-guided data association pipeline searches for the best photometrically matched points along geometrically possible edges through template matching, so that the matches can be further refined in later bundle adjustment. The core of our proposed data association strategy lies in a point-to-edge geometric uncertainty analysis, which analytically derives (1) a probabilistic search length formula that significantly reduces the search space and (2) a geometric confidence metric for mapping degradation detection based on the predicted depth uncertainty. Moreover, a match confidence based patch size adaption strategy is integrated into our pipeline to reduce matching ambiguity. We present extensive analysis and evaluation of our proposed system on synthetic and real- world benchmark datasets under the influence of illumination changes and large camera motions, where our proposed system outperforms current state-of-art algorithms. 
    more » « less
  2. The performance of object detection models in adverse weather conditions remains a critical challenge for intelligent transportation systems. Since advancements in autonomous driving rely heavily on extensive datasets, which help autonomous driving systems be reliable in complex driving environments, this study provides a comprehensive dataset under diverse weather scenarios like rain, haze, nighttime, or sun flares and systematically evaluates the robustness of state-of-the-art deep learning-based object detection frameworks. Our Adverse Driving Conditions Dataset features eight single weather effects and four challenging mixed weather effects, with a curated collection of 50,000 traffic images for each weather effect. State-of-the-art object detection models are evaluated using standard metrics, including precision, recall, and IoU. Our findings reveal significant performance degradation under adverse conditions compared to clear weather, highlighting common issues such as misclassification and false positives. For example, scenarios like haze combined with rain cause frequent detection failures, highlighting the limitations of current algorithms. Through comprehensive performance analysis, we provide critical insights into model vulnerabilities and propose directions for developing weather-resilient object detection systems. This work contributes to advancing robust computer vision technologies for safer and more reliable transportation in unpredictable real-world environments. 
    more » « less
  3. Current collaborative augmented reality (AR) systems establish a common localization coordinate frame among users by exchanging and comparing maps comprised of feature points. However, relative positioning through map sharing struggles in dynamic or feature-sparse environments. It also requires that users exchange identical regions of the map, which may not be possible if they are separated by walls or facing different directions. In this paper, we present Cappella11Like its musical inspiration, Cappella utilizes collaboration among agents to forgo the need for instrumentation, an infrastructure-free 6-degrees-of-freedom (6DOF) positioning system for multi-user AR applications that uses motion estimates and range measurements between users to establish an accurate relative coordinate system. Cappella uses visual-inertial odometry (VIO) in conjunction with ultra-wideband (UWB) ranging radios to estimate the relative position of each device in an ad hoc manner. The system leverages a collaborative particle filtering formulation that operates on sporadic messages exchanged between nearby users. Unlike visual landmark sharing approaches, this allows for collaborative AR sessions even if users do not share the same field of view, or if the environment is too dynamic for feature matching to be reliable. We show that not only is it possible to perform collaborative positioning without infrastructure or global coordinates, but that our approach provides nearly the same level of accuracy as fixed infrastructure approaches for AR teaming applications. Cappella consists of an open source UWB firmware and reference mobile phone application that can display the location of team members in real time using mobile AR. We evaluate Cappella across mul-tiple buildings under a wide variety of conditions, including a contiguous 30,000 square foot region spanning multiple floors, and find that it achieves median geometric error in 3D of less than 1 meter. 
    more » « less
  4. In this paper, we meticulously examine the robustness of computer vision object detection frameworks within the intricate realm of real-world traffic scenarios, with a particular emphasis on challenging adverse weather conditions. Conventional evaluation methods often prove inadequate in addressing the complexities inherent in dynamic traffic environments—an increasingly vital consideration as global advancements in autonomous vehicle technologies persist. Our investigation delves specifically into the nuanced performance of these algorithms amidst adverse weather conditions like fog, rain, snow, sun flare, and more, acknowledging the substantial impact of weather dynamics on their precision. Significantly, we seek to underscore that an object detection framework excelling in clear weather may encounter significant challenges in adverse conditions. Our study incorporates in-depth ablation studies on dual modality architectures, exploring a range of applications including traffic monitoring, vehicle tracking, and object tracking. The ultimate goal is to elevate the safety and efficiency of transportation systems, recognizing the pivotal role of robust computer vision systems in shaping the trajectory of future autonomous and intelligent transportation technologies. 
    more » « less
  5. This paper presents a systematic approach on realtime reconstruction of an underwater environment using Sonar, Visual, Inertial, and Depth data. In particular, low lighting conditions, or even complete absence of natural light inside caves, results in strong lighting variations, e.g., the cone of the artificial video light intersecting underwater structures, and the shadow contours. The proposed method utilizes the well defined edges between well lit areas and darkness to provide additional features, resulting into a denser 3D point cloud than the usual point clouds from a Visual SLAM system. Experimental results in an underwater cave at Ginnie Springs, FL, with a custommade underwater sensor suite demonstrate the performance of our system. This will enable more robust navigation of AUVs using the denser 3D point cloud to detect obstacles and achieve higher resolution reconstructions. 
    more » « less