skip to main content


Title: Forest Management and Adaptation Strategies in Response to Climate Change by the Taiwanese Public
Forests account for 60% of lands in Taiwan. Climate change impacts forests in many aspects and is increasingly likely to undermine the ability of forests to provide basic ecosystem services. To help reduce the impact of climate change on Taiwan’s forests, people must be made aware of the relationship between climate change and forests. Based on questionnaires collected from 17 cities in Taiwan, this study applied spatial analysis to assess the respondents’ understanding of climate change and adaptation strategies for forest management. A total of 650 questionnaires were distributed and 488 valid ones were collected. The results show that (1) Most respondents believe that climate change is true and more than half of the respondents have experienced extreme weather events, especially extreme rainfall; (2) Most respondents believe that climate change will affect Taiwan’s forests with the majority recognizing the increasing impact of extreme events being the primary cause, followed by changes in the composition of tree species and the deterioration of forest adaptability due to climate change; (3) Most respondents expressed that forest management should be adjusted for climate change and called for measures being taken to establish mixed forests as well as monitoring forest damage; (4) In order to address the difficulties faced by forest owners on the impact of climate change, the majority of respondents felt that the government should raise forest owners’ understanding on climate change and adaptation policies, while the subsidy incentives must also be adjusted. The results of this study show that the respondents do realize the importance of climate change and forest management so much so their awareness in this matter led to their support for forest adaptation measures and policies.  more » « less
Award ID(s):
1633756
NSF-PAR ID:
10287906
Author(s) / Creator(s):
Date Published:
Journal Name:
Atmosphere
Volume:
12
Issue:
8
ISSN:
2619-8231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the United States (US), family forest owners, a group that includes individuals, families, trusts, and estates, are the largest single landowner category, owning approximately one-third of the nation's forests. These landowners' individualized decision-making on forest management has a profound impact on US forest cover and function at both local and regional scales. We sought to understand perceptions among family forest specialists of: climate impacts and adaptation options across different forested US regions; how family forest owners are taking climate adaptation into consideration in their forest management, if at all; and major barriers to more active management for adaptation among family forest owners. We conducted semi-structured interviews with 48 forest experts across the US who work with family forest owners, including extension specialists, state forestry agency employees, and consulting foresters who focus on family forest engagement. Our interviewees shared details on how both climate change impacts and forest management for climate adaptation vary across the US, and they perceived a lack of active forest management by family forest owners. They explained that western forest landowners confronting the imminent threat of catastrophic wildfires are more likely to see a need for active forest management. By contrast, in the east, where most forestland is privately owned, interviewees said that landowners see relatively fewer climate impacts on their forests and less need for forest management to respond to climate change. Perceived barriers to more active family forest management for climate adaptation include the lack of more robust markets for a wide range of forest products, a higher capacity forestry workforce, education and assistance in planning forest management, and addressing the issue of increased parcelization of family forest lands. We situate these perceptions in conversations on the role of boundary organizations in climate adaptation, how individual adaptation occurs, and how governing methods frame adaptation possibilities. 
    more » « less
  2. Abstract

    Species distribution models predict shifts in forest habitat in response to warming temperatures associated with climate change, yet tree migration rates lag climate change, leading to misalignment of current species assemblages with future climate conditions. Forest adaptation strategies have been proposed to deliberately adjust species composition by planting climate‐suitable species. Practical evaluations of adaptation plantings are limited, especially in the context of ecological memory or extreme climate events.

    In this study, we examined the 3‐year survival and growth response of future climate‐adapted seedling transplants within operational‐scale silvicultural trials across temperate forests in the northeastern US. Nine species were selected for evaluation based on projected future importance under climate change and potential functional redundancy with species currently found in these ecosystems. We investigated how adaptation planting type (‘population enrichment’ vs. ‘assisted range expansion’) and local site conditions reinforce interference interactions with existing vegetation at filtering adaptation strategies focused on transitioning forest composition.

    Our results show the performance of seedling transplants is based on species (e.g. functional attributes and size), the strength of local competition (e.g. ecological memory) and adaptation planting type, a proxy for source distance. These findings were consistent across regional forests but modified by site‐specific conditions such as browse pressure and extreme climate events, namely drought and spring frost events.

    Synthesis and applications. Our results highlight that managing forests for shifts in future composition represents a promising adaptation strategy for incorporating new species and functional traits into contemporary forests. Yet, important barriers remain for the establishment of future climate‐adapted forests that will most likely require management intervention. Nonetheless, the broader applicability of our findings demonstrates the potential for adaptation plantings to serve as strategic source nodes for the establishment of future climate‐adapted species across functionally connected landscapes.

     
    more » « less
  3. Abstract

    Climate change is altering disturbance regimes and recovery rates of forests globally. The future of these forests will depend on how climate change interacts with management activities. Forest managers are in critical need of strategies to manage the effects of climate change.

    We co‐designed forest management scenarios with forest managers and stakeholders in the Klamath ecoregion of Oregon and California, a seasonally dry forest in the Western US subject to fire disturbances. The resultant scenarios span a broad range of forest and fire management strategies. Using a mechanistic forest landscape model, we simulated the scenarios as they interacted with forest growth, succession, wildfire disturbances and climate change. We analysed the simulations to (a) understand how scenarios affected the fire regime and (b) estimate how each scenario altered potential forest composition.

    Within the simulation timeframe (85 years), the scenarios had a large influence on fire regimes, with fire rotation periods ranging from 60 years in a minimal management scenario to 180 years with an industrial forestry style management scenario. Regardless of management strategy, mega‐fires (>100,000 ha) are expected to increase in frequency, driven by stronger climate forcing and extreme fire weather.

    High elevation conifers declined across all climate and management scenarios, reflecting an imbalance between forest types, climate and disturbance. At lower elevations (<1,800 m), most scenarios maintained forest cover levels; however, the minimal intervention scenario triggered 5 × 105 ha of mixed conifer loss by the end of the century in favour of shrublands, whereas the maximal intervention scenario added an equivalent amount of mixed conifer.

    Policy implications. Forest management scenarios that expand beyond current policies—including privatization and aggressive climate adaptation—can strongly influence forest trajectories despite a climate‐enhanced fire regime. Forest management can alter forest trajectories by increasing the pace and scale of actions taken, such as fuel reduction treatments, or by limiting other actions, such as fire suppression.

     
    more » « less
  4. null (Ed.)
    We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great – can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? and (10) Is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest successional heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes. 
    more » « less
  5. Giannini, Alessandra (Ed.)
    Extreme weather events are expected to increase in frequency and severity due to climate change. However, we lack an understanding of how recent extreme weather events have impacted the U.S. population. We surveyed a representative sample of the U.S. public (n = 1071) in September 2021 about self-reported impacts they experienced from six types of extreme weather events within the past three years. We find that an overwhelming majority (86%) of the U.S. public reported being at least slightly impacted by an extreme weather event, and one-third (34%) reported being either very or extremely impacted by one or more types of extreme weather events. We clustered respondents into four impact groups, representing a composite of self-reported impacts from multiple types of extreme weather events. Respondents in the highest extreme weather impact group are more than 2.5 times as likely to identify as Black or Hispanic and 1.89 times more likely to live in a household with income levels below the Federal poverty level. We also observe reports of higher extreme weather impacts from respondents who are female, do not have a bachelor’s degree and live in a rural area. Our results indicate that extreme weather impacts are being felt by a broad cross-section of the U.S. public, with the highest impacts being disproportionately reported by populations that have previously been found to be more vulnerable to natural disasters and other extreme events. 
    more » « less