skip to main content

Title: Forest Management and Adaptation Strategies in Response to Climate Change by the Taiwanese Public
Forests account for 60% of lands in Taiwan. Climate change impacts forests in many aspects and is increasingly likely to undermine the ability of forests to provide basic ecosystem services. To help reduce the impact of climate change on Taiwan’s forests, people must be made aware of the relationship between climate change and forests. Based on questionnaires collected from 17 cities in Taiwan, this study applied spatial analysis to assess the respondents’ understanding of climate change and adaptation strategies for forest management. A total of 650 questionnaires were distributed and 488 valid ones were collected. The results show that (1) Most respondents believe that climate change is true and more than half of the respondents have experienced extreme weather events, especially extreme rainfall; (2) Most respondents believe that climate change will affect Taiwan’s forests with the majority recognizing the increasing impact of extreme events being the primary cause, followed by changes in the composition of tree species and the deterioration of forest adaptability due to climate change; (3) Most respondents expressed that forest management should be adjusted for climate change and called for measures being taken to establish mixed forests as well as monitoring forest damage; (4) In order to more » address the difficulties faced by forest owners on the impact of climate change, the majority of respondents felt that the government should raise forest owners’ understanding on climate change and adaptation policies, while the subsidy incentives must also be adjusted. The results of this study show that the respondents do realize the importance of climate change and forest management so much so their awareness in this matter led to their support for forest adaptation measures and policies. « less
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. In the United States (US), family forest owners, a group that includes individuals, families, trusts, and estates, are the largest single landowner category, owning approximately one-third of the nation's forests. These landowners' individualized decision-making on forest management has a profound impact on US forest cover and function at both local and regional scales. We sought to understand perceptions among family forest specialists of: climate impacts and adaptation options across different forested US regions; how family forest owners are taking climate adaptation into consideration in their forest management, if at all; and major barriers to more active management for adaptation among family forest owners. We conducted semi-structured interviews with 48 forest experts across the US who work with family forest owners, including extension specialists, state forestry agency employees, and consulting foresters who focus on family forest engagement. Our interviewees shared details on how both climate change impacts and forest management for climate adaptation vary across the US, and they perceived a lack of active forest management by family forest owners. They explained that western forest landowners confronting the imminent threat of catastrophic wildfires are more likely to see a need for active forest management. By contrast, in the east, where mostmore »forestland is privately owned, interviewees said that landowners see relatively fewer climate impacts on their forests and less need for forest management to respond to climate change. Perceived barriers to more active family forest management for climate adaptation include the lack of more robust markets for a wide range of forest products, a higher capacity forestry workforce, education and assistance in planning forest management, and addressing the issue of increased parcelization of family forest lands. We situate these perceptions in conversations on the role of boundary organizations in climate adaptation, how individual adaptation occurs, and how governing methods frame adaptation possibilities.« less
  2. null (Ed.)
    We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great – can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? and (10) Is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keepmore »pace with changing climatic and wildfire regimes and declining forest successional heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.« less
  3. Giannini, Alessandra (Ed.)
    Extreme weather events are expected to increase in frequency and severity due to climate change. However, we lack an understanding of how recent extreme weather events have impacted the U.S. population. We surveyed a representative sample of the U.S. public (n = 1071) in September 2021 about self-reported impacts they experienced from six types of extreme weather events within the past three years. We find that an overwhelming majority (86%) of the U.S. public reported being at least slightly impacted by an extreme weather event, and one-third (34%) reported being either very or extremely impacted by one or more types of extreme weather events. We clustered respondents into four impact groups, representing a composite of self-reported impacts from multiple types of extreme weather events. Respondents in the highest extreme weather impact group are more than 2.5 times as likely to identify as Black or Hispanic and 1.89 times more likely to live in a household with income levels below the Federal poverty level. We also observe reports of higher extreme weather impacts from respondents who are female, do not have a bachelor’s degree and live in a rural area. Our results indicate that extreme weather impacts are being felt bymore »a broad cross-section of the U.S. public, with the highest impacts being disproportionately reported by populations that have previously been found to be more vulnerable to natural disasters and other extreme events.« less
  4. Abstract Purpose of Review Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. Recent Findings Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outlinemore »the actions needed now to advance research and practice on conservation, economic, environmental justice, and public health interests, as well as the trade-offs that must be considered. Summary Scientists, planners, foresters and fire managers, fire safety, air quality, and public health practitioners must collaboratively work together. This article is the result of a series of transdisciplinary conversations to find common ground and subsequently provide a holistic view of how forest and fire management intersect with human health through the impacts of smoke and articulate the need for an integrated approach to both planning and practice.« less
  5. Climate change has intensified the scale of global wildfire impacts in recent decades. In order to reduce fire impacts, management policies are being proposed in the western United States to lower fire risk that focus on harvesting trees, including large-diameter trees. Many policies already do not include diameter limits and some recent policies have proposed diameter increases in fuel reduction strategies. While the primary goal is fire risk reduction, these policies have been interpreted as strategies that can be used to save trees from being killed by fire, thus preventing carbon emissions and feedbacks to climate warming. This interpretation has already resulted in cutting down trees that likely would have survived fire, resulting in forest carbon losses that are greater than if a wildfire had occurred. To help policymakers and managers avoid these unintended carbon consequences and to present carbon emission sources in the same context, we calculate western United States forest fire carbon emissions and compare them with harvest and fossil fuel emissions (FFE) over the same timeframe. We find that forest fire carbon emissions are on average only 6% of anthropogenic FFE over the past decade. While wildfire occurrence and area burned have increased over the last threemore »decades, per area fire emissions for extreme fire events are relatively constant. In contrast, harvest of mature trees releases a higher density of carbon emissions (e.g., per unit area) relative to wildfire (150–800%) because harvest causes a higher rate of tree mortality than wildfire. Our results show that increasing harvest of mature trees to save them from fire increases emissions rather than preventing them. Shown in context, our results demonstrate that reducing FFEs will do more for climate mitigation potential (and subsequent reduction of fire) than increasing extractive harvest to prevent fire emissions. On public lands, management aimed at less-intensive fuels reduction (such as removal of “ladder” fuels, i.e., shrubs and small-diameter trees) will help to balance reducing catastrophic fire and leave live mature trees on the landscape to continue carbon uptake.« less