skip to main content


Title: Integrating STEM and Computing in PK-12: Operationalizing Computational Thinking for STEM Learning and Assessment
There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration.  more » « less
Award ID(s):
1842035
NSF-PAR ID:
10289223
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Gresalfi, M.; Horn, I. S.
Date Published:
Journal Name:
The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
3
Page Range / eLocation ID:
1479-1486
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gresalfi, M. ; Horn, I. S. (Ed.)
    There is broad belief that preparing all students in preK-12 for a future in STEM involves integrating computing and computational thinking (CT) tools and practices. Through creating and examining rich “STEM+CT” learning environments that integrate STEM and CT, researchers are defining what CT means in STEM disciplinary settings. This interactive session brings together a diverse spectrum of leading STEM researchers to share how they operationalize CT, what integrated CT and STEM learning looks like in their curriculum, and how this learning is measured. It will serve as a rich opportunity for discussion to help advance the state of the field of STEM and CT integration. 
    more » « less
  2. In the decades since Papert published Mindstorms (1980), computation has transformed nearly every branch of scientific practice. Accordingly, there is increasing recognition that computation and computational thinking (CT) must be a core part of STEM education in a broad range of subjects. Previous work has demonstrated the efficacy of incorporating computation into STEM courses and introduced a taxonomy of CT practices in STEM. However, this work rarely involved teachers as more than implementers of units designed by researchers. In The Children’s Machine, Papert asked “What can be done to mobilize the potential force for change inherent in the position of teachers?” (Papert, 1994, pg. 79). We argue that involving teachers as co-design partners supports them to be cultural change agents in education. We report here on the first phase of a research project in which we worked with STEM educators to co-design curricular science units that incorporate computational thinking and practices. Eight high school teachers and one university professor joined nine members of our research team for a month-long Computational Thinking Summer Institute (CTSI). The co-design process was a constructionist design and learning experience for both the teachers and researchers. We focus here on understanding the co-design process and its implications for teachers by asking: (1) How did teachers shift in their attitudes and confidence regarding CT? (2) What different co-design styles emerged and did any tensions arise? Generally, we found that teachers gained confidence and skills in CT and computational tools over the course of the summer. Only one teacher reported a decrease in confidence in one aspect of CT (computational modeling), but this seemed to result from gaining a broader and more nuanced understanding of this rich area. A range of co-design styles emerged over the summer. Some teachers chose to focus on designing the curriculum and advising on the computational tools to be used in it, while leaving the construction of those tools to their co-designers. Other teachers actively participated in constructing models and computational tools themselves. The pluralism of co-design styles allowed teachers of various comfort levels with computation to meaningfully contribute to a computationally enhanced constructionist curriculum. However, it also led to a tension for some teachers between working to finish their curriculum versus gaining experience with computational tools. In the time crunch to complete their unit during CTSI, some teachers chose to save time by working on the curriculum while their co-design partners (researchers) created the supporting computational tools. These teachers still grew in their computational sophistication, but they could not devote as much time as they wanted to their own computational learning. 
    more » « less
  3. This paper presents findings from a qualitative study of eleven experienced STEM educators who worked alongside developers to design and implement data-rich lessons in their grades 6–9 mathematics and science classrooms. In the context of a project that seeks to develop professional learning for data fluency, researchers documented the co-development process to articulate a model of what teachers need to know and be able to do in order to support their students’ data fluency. The project team distilled key findings into two framing documents: 1) a description of high-leverage areas of focus for PL which highlight challenges faced by teachers, which are common, important for data fluency, and represent opportunities for supporting teacher and student growth; and 2) a logic model that describes how the PL course under development is expected to influence teacher, classroom, and student outcomes. This paper contributes to the larger education community by defining the professional learning needs of educators who wish to integrate data into their STEM classrooms. These frameworks provide designers and researchers with touchpoints to structure and study PL experiences, lesson materials, and other classroom resources for both new and veteran educators. These tools can provide STEM teachers with guidance for reflecting on their current knowledge, skills, beliefs, and teaching practices that help their students become more data fluent. 
    more » « less
  4. The goal of this study is to bring current computational thinking in STEM educational efforts in line with the increasingly computational nature of STEM research practices. We conducted interviews with STEM practitioners in various fields to understand the nature of CT as it happens in authentic research settings and to revisit a first iteration of our definition of CT in form of a taxonomy. This exploration gives us insight into how scientists use computers in their work and help us identify what practices are important to include in high school STEM learning contexts. Our findings will inform the design of classroom activities to better prepare today’s students for the modern STEM landscape that awaits them. 
    more » « less
  5. ackground: Historically Black College and Universities (HBCUs) have for decades played a pivotal role in producing Black scientists. Research found that HBCUs, despite being under funded and resourced, were responsible for over 10% of Black scientists with doctorates. Even though most earn their doctorates at Historically White Institutions (HWIS), understanding the experience of Black STEM doctoral students at HBCUs is of paramount importance to impacting opportunity for success for underrepresented population groups. HBCUs are recognized for approaches to learning and learning environments that are more relational, encouraging peer to peer and student to faculty relationships, particularly in the form of same-race and same sex mentorships, resulting in less negative racialized gendered experiences and less competitive atmospheres. In spite of what appears to be accepted truths, such as HBCUs offering more culturally affirming experiences, some researchers suggests that little empirical research exists on the quality of support structures available for graduate students at HBCUS in STEM academic fields, particularly mentoring. Increased understanding would provide essential framing necessary for developing more effective mentors at HBCUs, especially given that there are limited numbers of Black faculty in STEM, even at HBCUs. Theoretical Framework: Anti-racism and critical capital theory are employed as theoretical frameworks. Both are well suited for questioning taken-for-granted assumptions about the lived experiences of racialized others and for deconstructing systemic issues influencing common faculty practices. These frameworks highlight the contextual experiences of STEM doctoral learning. Research Design: The researchers were interested in understanding how STEM doctoral faculty at HBCUs perceive their role as mentors. An NSF AGEP sponsored social science research project explored the dispositions, skills, and knowledge of eight STEM faculty at a HBCU. Attitudes towards culturally liberative mentoring were explored through a qualitative case study. The participating faculty were involved in an institutional change program and were interviewed for an average of 60 minutes. Constant comparative data analysis method was used. Additionally, STEM faculty from participating departments completed two mentoring competency and attitude inventories. This case was drawn from a larger multiple embedded case study. Research Findings: The research findings indicate that STEM doctoral faculty mentors at HBCUs express attitudes about mentoring that are not all that different from their PWIS counterparts. They have a tendency to hold deficit views of domestic Black students and have minimal awareness of how culture inhibits or facilitates a positive learning experience for Black students. Further the culture of science tended to blind them from the culture of people. Research Implications: In order to enhance the learning experiences of Black STEM doctoral students at HBCUs, the Black student experience at HBCUs must be deromanticized. Understanding the impact of anti-Black racism even within an environment historically and predominantly Black is imperative. Recognizing the ways in which anti-Black attitudes are insidiously present in faculty attitudes and practices and in environments perceived as friendly and supportive for Black students highlights opportunities for STEM faculty development that can move toward a more culturally liberative framework. 
    more » « less