skip to main content


Title: A Data Driven, Convex Optimization Approach to Learning Koopman Operators}
Koopman operators provide tractable means of learning linear approximations of non-linear dynamics. Many approaches have been proposed to find these operators, typically based upon approximations using an a-priori fixed class of models. However, choosing appropriate models and bounding the approximation error is far from trivial. Motivated by these difficulties, in this paper we propose an optimization based approach to learning Koopman operators from data. Our results show that the Koopman operator, the associated Hilbert space of observables and a suitable dictionary can be obtained by solving two rank-constrained semi-definite programs (SDP). While in principle these problems are NP-hard, the use of standard relaxations of rank leads to convex SDPs.  more » « less
Award ID(s):
1814631 2038493 1646121
NSF-PAR ID:
10291531
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
144
ISSN:
2640-3498
Page Range / eLocation ID:
436-446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Koopman decomposition is a nonlinear generalization of eigen-decomposition, and is being increasingly utilized in the analysis of spatio-temporal dynamics. Well-known techniques such as the dynamic mode decomposition (DMD) and its linear variants provide approximations to the Koopman operator, and have been applied extensively in many fluid dynamic problems. Despite being endowed with a richer dictionary of nonlinear observables, nonlinear variants of the DMD, such as extended/kernel dynamic mode decomposition (EDMD/KDMD) are seldom applied to large-scale problems primarily due to the difficulty of discerning the Koopman-invariant subspace from thousands of resulting Koopman eigenmodes. To address this issue, we propose a framework based on a multi-task feature learning to extract the most informative Koopman-invariant subspace by removing redundant and spurious Koopman triplets. In particular, we develop a pruning procedure that penalizes departure from linear evolution. These algorithms can be viewed as sparsity-promoting extensions of EDMD/KDMD. Furthermore, we extend KDMD to a continuous-time setting and show a relationship between the present algorithm, sparsity-promoting DMD and an empirical criterion from the viewpoint of non-convex optimization. The effectiveness of our algorithm is demonstrated on examples ranging from simple dynamical systems to two-dimensional cylinder wake flows at different Reynolds numbers and a three-dimensional turbulent ship-airwake flow. The latter two problems are designed such that very strong nonlinear transients are present, thus requiring an accurate approximation of the Koopman operator. Underlying physical mechanisms are analysed, with an emphasis on characterizing transient dynamics. The results are compared with existing theoretical expositions and numerical approximations. 
    more » « less
  2. Abstract

    Koopman operators linearize nonlinear dynamical systems, making their spectral information of crucial interest. Numerous algorithms have been developed to approximate these spectral properties, and dynamic mode decomposition (DMD) stands out as the poster child of projection-based methods. Although the Koopman operator itself is linear, the fact that it acts in an infinite-dimensional space of observables poses challenges. These include spurious modes, essential spectra, and the verification of Koopman mode decompositions. While recent work has addressed these challenges for deterministic systems, there remains a notable gap in verified DMD methods for stochastic systems, where the Koopman operator measures the expectation of observables. We show that it is necessary to go beyond expectations to address these issues. By incorporating variance into the Koopman framework, we address these challenges. Through an additional DMD-type matrix, we approximate the sum of a squared residual and a variance term, each of which can be approximated individually using batched snapshot data. This allows verified computation of the spectral properties of stochastic Koopman operators, controlling the projection error. We also introduce the concept of variance-pseudospectra to gauge statistical coherency. Finally, we present a suite of convergence results for the spectral information of stochastic Koopman operators. Our study concludes with practical applications using both simulated and experimental data. In neural recordings from awake mice, we demonstrate how variance-pseudospectra can reveal physiologically significant information unavailable to standard expectation-based dynamical models.

     
    more » « less
  3. Abstract

    Koopman operators are infinite‐dimensional operators that globally linearize nonlinear dynamical systems, making their spectral information valuable for understanding dynamics. However, Koopman operators can have continuous spectra and infinite‐dimensional invariant subspaces, making computing their spectral information a considerable challenge. This paper describes data‐driven algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators from trajectory data. We introduce residual dynamic mode decomposition (ResDMD), which provides the first scheme for computing the spectra and pseudospectra of general Koopman operators from snapshot data without spectral pollution. Using the resolvent operator and ResDMD, we compute smoothed approximations of spectral measures associated with general measure‐preserving dynamical systems. We prove explicit convergence theorems for our algorithms (including for general systems that are not measure‐preserving), which can achieve high‐order convergence even for chaotic systems when computing the density of the continuous spectrum and the discrete spectrum. Since our algorithms have error control, ResDMD allows aposteri verification of spectral quantities, Koopman mode decompositions, and learned dictionaries. We demonstrate our algorithms on the tent map, circle rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz system. Finally, we provide kernelized variants of our algorithms for dynamical systems with a high‐dimensional state space. This allows us to compute the spectral measure associated with the dynamics of a protein molecule with a 20,046‐dimensional state space and compute nonlinear Koopman modes with error bounds for turbulent flow past aerofoils with Reynolds number >105that has a 295,122‐dimensional state space.

     
    more » « less
  4. Interest in soft robotics has increased in recent years due to their potential in a myriad of applications. A wide variety of soft robots has emerged, including bio-inspired robotic swimmers such as jellyfish, rays, and robotic fish. However, the highly nonlinear fluid-structure interactions pose considerable challenges in the analysis, modeling, and feedback control of these soft robotic swimmers. In particular, developing models that are of high fidelity but are also amenable to control for such robots remains an open problem. In this work, we pro- pose a data-driven approach that exploits Koopman operators to obtain a linear representation of the soft swimmer dynamics. Specifically, two methodologies are explored for obtaining the basis functions of the the operator, one based on data-based derivatives estimated using high-gain observers, and the other based on the dynamics structure of a tail-actuated rigid-body robotic fish. The resulting approximate finite-dimensional operators are trained and evaluated using data from high-fidelity CFD simulations that incorporate fluid-structure interactions. Validation results demonstrate that, while both methods are promising in producing control-oriented models, the approach based on derivative estimates shows higher accuracy in state prediction. 
    more » « less
  5. Conditional mean embedding (CME) operators encode conditional probability densities within Reproducing Kernel Hilbert Space (RKHS). In this paper, we present a decentralized algorithm for a collection of agents to cooperatively approximate CME over a network. Communication constraints limit the agents from sending all data to their neighbors; we only allow sparse representations of covariance operators to be exchanged among agents, compositions of which defines CME. Using a coherence-based compression scheme, we present a consensus-type algorithm that preserves the average of the approximations of the covariance operators across the network. We theoretically prove that the iterative dynamics in RKHS is stable. We then empirically study our algorithm to estimate CMEs to learn spectra of Koopman operators for Markovian dynamical systems and to execute approximate value iteration for Markov decision processes (MDPs). 
    more » « less