skip to main content


Title: Student learning outcomes with hybrid computer simulations and hands-on labs
Computer simulations for physics labs may be combined with hands-on lab equipment to boost student understanding and make labs more accessible. Hybrid labs of HTML5-based computer simulations and hands-on lab equipment for topics in mechanics were investigated in a large, algebra-based, studio physics course for life science students at a private, research-intensive institution. Computer simulations were combined with hands-on equipment and compared to traditional hands-on labs using an A/B testing protocol. Learning outcomes were measured for the specific topic of momentum conservation by comparing student scores on post-lab exercises, related quiz and exam questions, and a subset of questions on the Energy and Momentum Conceptual Survey (EMCS) administered before and after instruction for both groups. We find that students who completed a hands-on lab vs. a hybrid lab showed no difference in performance on momentum assessments.  more » « less
Award ID(s):
1712159
PAR ID:
10291756
Author(s) / Creator(s):
; ; ;
Editor(s):
Bennett, M; Wolf, S.; Frank, B. W.
Date Published:
Journal Name:
2020 Physics Education Research Conference Proceedings
Page Range / eLocation ID:
448 to 453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)
    We present highlights from a series of hands-on physics lab modules developed for remote teaching. The labs were composed of multiple self-guided inquiry modules. Though the labs were developed from scratch, some modules that were central to the design process were borrowed from previous PDP sessions and the guiding PDP principles of mirroring authentic Science, Technology, Engineering, and Mathematics (STEM) practices (e.g., allowing students to raise questions and take ownership of decision making). One notable aspect of this work is that by sourcing and assembling low-cost ($25 per student) lab kits that were sent to each student, the majority of the modules were hands-on despite being fully online. Combining online resources and simulation tools with individual hardware kits and small lab groups allowed for a mix of synchronous and asynchronous exploration. This mixed lab mode was successful in promoting both inquiry exploration and community building. One example of a lab design choice aimed at overcoming online barriers was that in lieu of weekly lab write-ups, groups submitted video checkouts in which students were encouraged to reflect on the lab, self-assess their learning outcomes, and highlight unique aspects of their lab experience. This lab was specifically developed in response to the unforeseen challenges of online teaching; however, multiple aspects of the course will seamlessly transfer to an in-person lab setting. 
    more » « less
  2. Frank, Brian W. ; Jones, Dyan L. ; Ryan, Qing X. (Ed.)
    While understanding laboratory equipment is an important learning goal of physics laboratory (lab) instruction, previous studies have found inequities as to who gets to use equipment in in-person lab classes. With the transition to remote learning during the COVID-19 pandemic, class dynamics changed and the effects on equipment usage remain unclear. As part of a larger effort to make intro physics labs more equitable, we investigated student equipment usage based on gender and race in two introductory physics lab courses, one taught in-person and one taught remotely. We found inequities between men and women for in-person instruction, replicating previous work with a new student population. In contrast, we found that remote instruction created a more gender equitable learning environment, albeit with one student typically in charge of the equipment per class session. When we looked at equipment handling based on student race, we found no inequities in either format. These results suggest that changes should be made in introductory labs to create a more gender equitable learning environment and that some aspects of remote labs could help make these labs more equitable. 
    more » « less
  3. This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes. 
    more » « less
  4. Following the outbreak of COVID-19, conducting lab classes emerged as a major challenge. Just switching to remote only mode with virtual experiments and simulations was very limiting for both the instructors and the students. At an historically black university, an approach that integrated the hands-on experiments enriched by simulation resources with virtual follow up was adopted. The key advantages of this approach were access to equipment, flexibility on when and how experiments are conducted, and the curiosity driven engagement fostered. Though this approach lacks the in-person one-on-one engagement and use of specialized equipment in the lab, it established a different and, in some aspect, deeper student engagement. Development of troubleshooting skills and the confidence in setting experiments are a few key observations. In this study, we present a comparison of the efficacy of such remote integrated modes of conducting Physics experiments with in-person in laboratory teaching of undergraduate students, who are enrolled in the Introduction to Physics Experiment course participated at Morgan State University. We conclude that these two approaches are complementary to one another. 
    more » « less
  5. The main objective of authentic learning is to offer students an exciting and stimulating educational setting that provides practical experiences in tackling real-world security issues. Each educational theme is composed of pre-lab, lab, and post-lab activities. Through the application of authentic learning, we create and produce portable lab equipment for AI Security and Privacy on Google CoLab. This enables students to access and practice these hands-on labs conveniently and without the need for time-consuming installations and configurations. As a result, students can concentrate more on learning concepts and gain more experience in hands-on problem-solving abilities 
    more » « less