Recent studies have shown that students follow stable behavioral patterns while learning in online educational systems. These behavioral patterns can further be used to group the students into different clusters. However, as these clusters include both high- and low-performance students, the relation between the behavioral patterns and student performance is yet to be clarified. In this work, we study the relationship between students’ learning behaviors and their performance, in a self-organized online learning system that allows them to freely practice with various problems and worked examples. We represent each student’s behavior as a vector of highsupport sequential micro-patterns. Then, we discover both the prevalent behavioral patterns in each group and the shared patterns across groups using discriminative non-negative matrix factorization. Our experiments show that we can successfully detect such common and specific patterns in students’ behavior that can be further interpreted into student learning behavior trait patterns and performance patterns.
Structure-Based Discriminative Matrix Factorization for Detecting Inefficient Learning Behaviors
Modern online learning platforms offer a wealth of learning content while leaving the choice of content for study and practice to the learner. Recent work has demonstrated that many students use inefficient learning strategies that lead to lower performance in this context. The ability to detect inefficient learning behavior by monitoring learning data opens a way to timely intervention that could lead to better learning and performance. In this work, we propose SB-DNMF, a structure-based discriminative non-negative matrix factorization model aimed to distinguish between common and distinct learning behavior patterns of low- and high-learning gain students. Our model can discover latent groups of students' behavioral micro-patterns while accounting for the structural similarities between these micro-patterns based upon a weighted edit-distance measure. Our experiments demonstrate that SB-DNMF can find meaningful latent factors that are associated with students' learning gain and can cluster the behavioral patterns into common (trait), and performance-related groups.
- Award ID(s):
- 1755910
- Publication Date:
- NSF-PAR ID:
- 10296475
- Journal Name:
- 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)
- Page Range or eLocation-ID:
- 283 to 290
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad Selesnick (Ed.)The Temple University Hospital EEG Corpus (TUEG) [1] is the largest publicly available EEG corpus of its type and currently has over 5,000 subscribers (we currently average 35 new subscribers a week). Several valuable subsets of this corpus have been developed including the Temple University Hospital EEG Seizure Corpus (TUSZ) [2] and the Temple University Hospital EEG Artifact Corpus (TUAR) [3]. TUSZ contains manually annotated seizure events and has been widely used to develop seizure detection and prediction technology [4]. TUAR contains manually annotated artifacts and has been used to improve machine learning performance on seizure detection tasks [5]. In this poster, we will discuss recent improvements made to both corpora that are creating opportunities to improve machine learning performance. Two major concerns that were raised when v1.5.2 of TUSZ was released for the Neureka 2020 Epilepsy Challenge were: (1) the subjects contained in the training, development (validation) and blind evaluation sets were not mutually exclusive, and (2) high frequency seizures were not accurately annotated in all files. Regarding (1), there were 50 subjects in dev, 50 subjects in eval, and 592 subjects in train. There was one subject common to dev and eval, five subjects common to dev andmore »
-
Educational data mining research has demonstrated that the large volume of learning data collected by modern e-learning systems could be used to recognize student behavior patterns and group students into cohorts with similar behavior. However, few attempts have been done to connect and compare behavioral patterns with known dimensions of individual differences. To what extent learner behavior is defined by known individual differences? Which of them could be a better predictor of learner engagement and performance? Could we use behavior patterns to build a data-driven model of individual differences that could be more useful for predicting critical outcomes of the learning process than traditional models? Our paper attempts to answer these questions using a large volume of learner data collected in an online practice system. We apply a sequential pattern mining approach to build individual models of learner practice behavior and reveal latent student subgroups that exhibit considerably different practice behavior. Using these models we explored the connections between learner behavior and both, the incoming and outgoing parameters of the learning process. Among incoming parameters we examined traditionally collected individual differences such as self-esteem, gender, and knowledge monitoring skills. We also attempted to bridge the gap between cluster-based behavior patternmore »
-
Students acquire knowledge as they interact with a variety of learning materials, such as video lectures, problems, and discussions. Modeling student knowledge at each point during their learning period and understanding the contribution of each learning material to student knowledge are essential for detecting students’ knowledge gaps and recommending learning materials to them. Current student knowledge modeling techniques mostly rely on one type of learning material, mainly problems, to model student knowledge growth. These approaches ignore the fact that students also learn from other types of material. In this paper, we propose a student knowledge model that can capture knowledge growth as a result of learning from a diverse set of learning resource types while unveiling the association between the learning materials of different types. Our multi-view knowledge model (MVKM) incorporates a flexible knowledge increase objective on top of a multi-view tensor factorization to capture occasional forgetting while representing student knowledge and learning material concepts in a lower-dimensional latent space. We evaluate our model in different experiments to show that it can accurately predict students’ future performance, differentiate between knowledge gain in different student groups and concepts, and unveil hidden similarities across learning materials of different types.
-
This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines the TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use themore »