skip to main content


Title: Transactive energy and solarization: assessing the potential for demand curve management and cost savings
Utilities and local power providers throughout the world have recognized the advantages of the "smart grid" to encourage consumers to engage in greater energy efficiency. The digitalization of electricity and the consumer interface enables utilities to develop pricing arrangements that can smooth peak load. Time-varying price signals can enable devices associated with heating, air conditioning, and ventilation (HVAC) systems to communicate with market prices in order to more efficiently configure energy demand. Moreover, the shorter time intervals and greater collection of data can facilitate the integration of distributed renewable energy into the power grid. This study contributes to the understanding of time-varying pricing using a model that examines the extent to which transactive energy can reduce economic costs of an aggregated group of households with varying levels of distributed solar energy. It also considers the potential for transactive energy to smooth the demand curve.  more » « less
Award ID(s):
1743772
NSF-PAR ID:
10296937
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
DESTION ’21: Design Automation for CPS and IoT
Page Range / eLocation ID:
19 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments. 
    more » « less
  2. The rapid expansion of intermittent grid-tied solar capacity is making the job of balancing electricity's real-time supply and demand increasingly challenging. To address the problem, recent work proposes mechanisms for actively controlling solar power output to the grid by enabling software to cap it as a fraction of its time-varying maximum output. Utilities can use these mechanisms to dynamically share the grid's solar capacity by controlling the solar output at each site. However, while enforcing an equal fraction of each solar site's time-varying maximum output results in "fair" short-term contributions of solar power, it does not result in "fair" long-term contributions of solar energy. This discrepancy arises from fundamental differences in enforcing "fair" access to the grid to contribute solar energy, compared to analogous fair-sharing in networks and processors. In this paper, we present a centralized and distributed algorithm to enable control of distributed solar capacity that enforces fair grid energy access. We implement our algorithm and evaluate it on synthetic data and real data across 18 solar sites. We show that traditional rate allocation, which enforces equal rates, results in solar sites contributing up to 18.9% less energy than an algorithm that enforces fair grid energy access over a single month. 
    more » « less
  3. Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results. 
    more » « less
  4. The declining cost and rising penetration of solar energy is poised to fundamentally impact grid operations, as utilities must continuously offset, potentially rapid and increasingly large, power fluctuations from highly distributed and "uncontrollable" solar sites to maintain the instantaneous balance between electricity's supply and demand. Prior work proposes to address the problem by designing various policies that actively control solar power to optimize grid operations. However, these policies implicitly assume the presence of "smart" solar modules capable of regulating solar output based on various algorithms. Unfortunately, implementing such algorithms is currently not possible, as smart inverters embed only a small number of operating modes and are not programmable. To address the problem, this paper presents the design and implementation of a software-defined solar module, called Helios. Helios exposes a high-level programmatic interface to a DC-DC power optimizer, which enables software to remotely control a solar module's power output in real time between zero and its current maximum, as dictated by the Sun's position and weather. Unlike current smart inverters, Helios focuses on enabling direct programmatic control of real solar power capable of implementing a wide range of control policies, rather than a few highly-specific operating modes. We evaluate Helios' performance, including its latency, energy usage, and flexibility. For the latter, we implement and evaluate a wide range of solar control algorithms both in the lab, using a solar emulator and programmable load, and outdoors. 
    more » « less
  5. Dynamic trip optimization in electric rail networks is a relatively unexplored topic. In this paper, we propose a transactive controller that includes an optimization framework and a control algorithm that enable minimum cost operation of an electric rail network. The optimization framework attempts to minimize the operational costs for a given electricity price by allowing variations of the trains’ acceleration profiles and therefore their power consumption and energy costs. Constraints imposed by the train dynamics, their schedules, and power consumption are included in this framework. A control algorithm is then proposed to optimize the electricity price through an iterative procedure that combines the desired demand profiles obtained from the optimization framework together with the variations in Distributed Energy Resources (DERs) while ensuring power balance. Together, they form to an overall framework that yields the desired transactions between the railway and power grid infrastructures. This approach is validated using simulation studies of the Southbound Amtrak service along the Northeast Corridor (NEC) between Boston, MA and New Haven, CT in the United States, reducing energy costs by 10% when compared to standard trip optimization based on minimum work. 
    more » « less