Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricing in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments. 
                        more » 
                        « less   
                    
                            
                            Transactive energy and solarization: assessing the potential for demand curve management and cost savings
                        
                    
    
            Utilities and local power providers throughout the world have recognized the advantages of the "smart grid" to encourage consumers to engage in greater energy efficiency. The digitalization of electricity and the consumer interface enables utilities to develop pricing arrangements that can smooth peak load. Time-varying price signals can enable devices associated with heating, air conditioning, and ventilation (HVAC) systems to communicate with market prices in order to more efficiently configure energy demand. Moreover, the shorter time intervals and greater collection of data can facilitate the integration of distributed renewable energy into the power grid. This study contributes to the understanding of time-varying pricing using a model that examines the extent to which transactive energy can reduce economic costs of an aggregated group of households with varying levels of distributed solar energy. It also considers the potential for transactive energy to smooth the demand curve. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1743772
- PAR ID:
- 10296937
- Date Published:
- Journal Name:
- DESTION ’21: Design Automation for CPS and IoT
- Page Range / eLocation ID:
- 19 to 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The rapid expansion of intermittent grid-tied solar capacity is making the job of balancing electricity's real-time supply and demand increasingly challenging. To address the problem, recent work proposes mechanisms for actively controlling solar power output to the grid by enabling software to cap it as a fraction of its time-varying maximum output. Utilities can use these mechanisms to dynamically share the grid's solar capacity by controlling the solar output at each site. However, while enforcing an equal fraction of each solar site's time-varying maximum output results in "fair" short-term contributions of solar power, it does not result in "fair" long-term contributions of solar energy. This discrepancy arises from fundamental differences in enforcing "fair" access to the grid to contribute solar energy, compared to analogous fair-sharing in networks and processors. In this paper, we present a centralized and distributed algorithm to enable control of distributed solar capacity that enforces fair grid energy access. We implement our algorithm and evaluate it on synthetic data and real data across 18 solar sites. We show that traditional rate allocation, which enforces equal rates, results in solar sites contributing up to 18.9% less energy than an algorithm that enforces fair grid energy access over a single month.more » « less
- 
            With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) [3] has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches [1]. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME [4]) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool [2].more » « less
- 
            Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.more » « less
- 
            Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    