skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Material characterization and structural response under earthquake loads of hakka rammed earth buildings
Hakka Tulou are rammed earth buildings that have survived material aging, natural weathering and earthquakes for hundreds of years. Previous paper has reported our observations and findings from nondestructive evaluations in field with focus on the integrity of the rammed earth outer walls and inner timber structures as well as the thermal comfort of living in these buildings [1]. This paper presents the structural response of Tulou buildings under earthquake loads using material data from field and employing finite element (FE) analysis program. The material characterization included scanning electron microscopy and compression strength/modulus of rammed earth samples and wall reinforcements, revealing their high strength and durability. The FE analyses were conducted on unreinforced Huanji Tulou as per the simplified lateral force analysis procedure defined by the Code ASCE-7 under three types of wall conditions: 1) unreinforced rammed earth outer wall only, 2) reinforced rammed earth outer wall without inner wooden structures, and 3) unreinforced rammed earth outer wall with inner wooden structures. The FE modeling revealed that the existing large crack in the outer earth wall of Huanji Tulou would not have developed under a strong earthquake load if the earth walls were reinforced. Furthermore, the high volume rammed earth wall integrated with inner timber structures would have offered the building unique earthquake resistance.  more » « less
Award ID(s):
0908199
PAR ID:
10297497
Author(s) / Creator(s):
; ;
Editor(s):
Guo, Adam
Date Published:
Journal Name:
Sustainable Structures
Volume:
1
Issue:
1
ISSN:
2789-3111
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blass, Hans (Ed.)
    Wood buildings in North American has been predominantly constructed using light-framed wood systems since early 1900’s, with only limited exception of heavy timber construction in some non-residential applications. This situation is likely to change in the future with the growing acceptance of mass timber construction in the region. In fact, a number of mass timber buildings have been constructed in recent years in the U.S. and Canada, including low- to mid-rise mixed-use buildings (e.g. UMass Student Center, T3 building) and tall towers (e.g. Brocks Commons at UBC). Most of these buildings utilized cross laminated timber (CLT) or nail laminated timber (NLT) floors and heavy timber framing systems to support gravity loads, and a non-wood lateral system such as concrete shear walls or a braced steel frame to resist wind and seismic loads. Although CLT material and glulam products have been recognized in the U.S. and Canada (IBC (2018) and NBCC (2015), there is currently no mass timber lateral systems in the U.S. and only one system (platform style panelized CLT shear wall) in Canada that is currently recognized by the building codes. As a result, special design procedures and review/approval processes must be followed for any building intended to use a mass timber lateral system. There is a need to promote codification of mass timber lateral systems in order to help further develop mass timber building market in North American. At the time of this paper, there has been an on-going effort to devel-op seismic design parameters for panelized CLT shear walls in the U.S. (ref) following the FEMA P695 procedure for platform construction. The other lateral system that at-tracted significant attention and research resources is post-tensioned CLT rocking wall system, which has the potential to be applicable to balloon framed low-rise to tall wood buildings. This paper will focus on recent research development on CLT rocking wall system in the U.S. and the effort to develop a seismic design procedure for this system for inclusion in the NDS Special Design Provisions for Wind and Seismic (SPDWS)(2008). While the expensive and time consuming process of the FEMA P695 process would provide the ability to use the equivalent lateral force method for design purposes, this path is not part of the discussion included here. 
    more » « less
  2. Driven by demand for sustainable buildings and reduction in construction time, mass timber, specifically cross-laminated timber (CLT), is being more widely used in mid-rise buildings in the US. In areas of the US with a significant seismic (i.e. earthquake) hazard, mass timber buildings that are seismically resilient are of significant interest. Low damage post-tensioned self-centering CLT shear walls (SC-CLT walls) provide an opportunity to develop seismically resilient CLT buildings. There is however insufficient knowledge of the lateral-load response and damage states of SC-CLT walls under multidirectional seismic loading conditions, which can have a pronounce effect on the seismic resilience of buildings with SC-CLT walls. In order to fill this knowledge gap, a series of lateral-load tests were performed at the NHERI Lehigh Large-Scale Multi-directional Hybrid Simulation Experimental Facility to investigate the multidirectional cyclic behavior of a low damage, resilient three-dimensional CLT building sub-assembly with SC-CLT coupled shear walls, CLT floor diaphragm, collector beams, and gravity load system. Comparisons are made between the lateral-load experimental response of the SC-CLT walls under unidirectional and multidirectional cyclic loading. 
    more » « less
  3. Driven by demand for sustainable buildings and a reduction in construction time, mass timber buildings, specifically cross-laminated timber (CLT), is being more widely used in mid-rise buildings in the US. Low damage post-tensioned self-centering (SC) CLT shear walls (SC-CLT walls) provide an opportunity to develop seismically resilient CLT buildings. Previous research focused primarily on the lateral-load response under unidirectional loading of isolated self-centering timber walls, without considering the interaction with the adjacent building structural components, i.e., the floor diaphragms, collector beams, and gravity load system. Buildings response under seismic loading is multidirectional and there are concerns that multidirectional loading may be more damaging to SC-CLT wall panels and the adjacent building structural components than unidirectional loading, which affects the potential seismic resilience of buildings with SC-CLT walls. A series of lateral-load tests of a 0.625-scale timber sub-assembly was conducted at the NHERI Lehigh Large-Scale Multi-Directional Hybrid Simulation Experimental Facility to investigate the the lateral-load response and damage of SC-CLT walls and the capability of the adjacent building structural components i.e., the floor diaphragms, collector beams, and gravity load system to accommodate the building response and the controlled-rocking of the SC-CLT walls under multidirectional lateral loading. 
    more » « less
  4. null (Ed.)
    Nonlinear time history analyses were conducted for 5-story and 12-story prototype buildings that used post-tensioned cross-laminated timber rocking walls coupled with U-shaped flexural plates (UFPs) as the lateral force resisting system. The building models were subjected to 22 far-field and 28 near-fault ground motions, with and without directivity effects, scaled to the design earthquake and maximum considered earthquake for Seattle, with ASCE Site Class D. The buildings were designed to performance objectives that limited structural damage to crushing at the wall toes and nonlinear deformation in the UFPs, while ensuring code-based interstory drift requirements were satisfied and the post-tensioned rods remained linear. The walls of the 12-story building had a second rocking joint at midheight to reduce flexural demands in the lower stories and interstory drift in the upper stories. The interstory drift, in-plane wall shear and overturning moment, UFP deformation, and extent of wall toe crushing is summarized for each building. Near-fault ground motions with directivity effects resulted in the largest demands for the 5-story building, while the midheight rocking joint diminished the influence of ground motion directivity effects in the 12-story building. Results for both buildings confirmed that UFPs located higher from the base of the walls dissipated more energy compared to UFPs closer to the base. 
    more » « less
  5. An accurate quantification of the displacement capacity of a reinforced masonry shear-wall system is of critical importance to seismic design because it has a direct implication on the seismic force modification factor, which is the R factor in ASCE 7. In spite of the shear capacity design requirement in TMS 402, special reinforced masonry walls within a building system could still develop shear-dominated behavior, which is perceived to be far more brittle than flexural behavior. These walls have a low shear-span ratio either because of the wall geometry (i.e., a low height-to-length ratio) or the coupling forces introduced by the horizontal diaphragms, which are often ignored in design. Although shear-dominated walls appeared to be very brittle in quasi-static tests conducted on single planar wall segments, reinforced masonry structures survived major ground shaking well in past earthquakes. This could be partly attributed to the beneficial influence of wall flanges as well as the over-strength of the system. Flanged walls are common in masonry buildings, but their behavior is not well understood because of the lack of laboratory test data. Furthermore, other walls or columns that are present in the structural system to carry gravity loads could enhance the lateral resistance of the shear walls and the displacement capacity of the system by providing axial restraints as well as alternative load paths for gravity loads. A research project is being carried out with shake-table tests to investigate the displacement capacity of shear-dominated reinforced masonry wall systems. This paper presents results of the first shake-table test conducted in this project on a full-scale single-story coupled T-wall system. The structure was tested to a drift ratio exceeding 15% without collapse. 
    more » « less