skip to main content


Title: Trust-based User Interface Design for Islanded Alternating Current Microgrids
Microgrid systems can provide extensive information using their measurement units to the operators. As microgrid systems become more pervasive, there will be a need to adjust the information an operator requires to provide an optimized user-interface. In this paper, a combinatorial optimization strategy is used to provide an optimal user-interface for the microgrid operator that selects information for display depending on the operator's trust level in the system, and the assigned task. We employ a method based on sensor placement by capturing elements of the interface as different sensors, that find an optimal set of sensors via combinatorial optimization. However, the typical inverter-based microgrid model poses challenges for the combinatorial optimization due to its poor conditioning. To combat the poor conditioning, we decompose the model into its slow and fast dynamics, and focus solely on the slow dynamics, which are more well conditioned. We presume the operator is tasked with monitoring phase angle and active and reactive power control of inverter-based distributed generators. We synthesize user-interface for each of these tasks under a wide range of trust levels, ranging from full trust to no trust. We found that, as expected, more information must be included in the interface when the operator has low trust. Further, this approach exploits the dynamics of the underlying microgrid to minimize information content (to avoid overwhelming the operator). The effectiveness of proposed approach is verified by modeling an inverter-based microgrid in Matlab.  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10298383
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Green Technologies Conference (GreenTech)
Page Range / eLocation ID:
469 to 476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern smart grid systems exploit a two-way interaction paradigm between the utility and the electricity user and promote the role of prosumer, as a new user type, able to generate and sell energy, or consume energy. Within such a setting, the prosumers and their interactions with the microgrid system become of high significance for its efficient operation. In this article, to model the corresponding interactions, we introduce a labor economics-based framework by exploiting the principles of contract theory, that jointly achieves the satisfaction of the various interacting system entities, i.e., the microgrid operator (MGO) and the prosumers. The MGO offers personalized rewards to the sellers and buyers, to incentivize them to sell and purchase energy, respectively. To provide a stable and efficient operation point, while aiming at jointly satisfying the profit and requirements of the involved competing parties, optimal personalized contracts, i.e., rewards and amount of sold/purchased energy, are determined, by formulating and solving contract-theoretic optimization problems between the MGO and the sellers or buyers. The analysis is provided for both cases of complete and incomplete information availability regarding the prosumers’ types. Detailed numerical results are presented to demonstrate the operation characteristics of the proposed framework under diverse scenarios. 
    more » « less
  2. Recent work has considered personalized route planning based on user profiles, but none of it accounts for human trust. We argue that human trust is an important factor to consider when planning routes for automated vehicles. This article presents a trust-based route-planning approach for automated vehicles. We formalize the human-vehicle interaction as a partially observable Markov decision process (POMDP) and model trust as a partially observable state variable of the POMDP, representing the human’s hidden mental state. We build data-driven models of human trust dynamics and takeover decisions, which are incorporated in the POMDP framework, using data collected from an online user study with 100 participants on the Amazon Mechanical Turk platform. We compute optimal routes for automated vehicles by solving optimal policies in the POMDP planning and evaluate the resulting routes via human subject experiments with 22 participants on a driving simulator. The experimental results show that participants taking the trust-based route generally reported more positive responses in the after-driving survey than those taking the baseline (trust-free) route. In addition, we analyze the trade-offs between multiple planning objectives (e.g., trust, distance, energy consumption) via multi-objective optimization of the POMDP. We also identify a set of open issues and implications for real-world deployment of the proposed approach in automated vehicles. 
    more » « less
  3. null (Ed.)
    Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according to the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance. 
    more » « less
  4. Abstract

    Researchers can investigate many aspects of animal ecology through noninvasive photo–identification. Photo–identification is becoming more efficient as matching individuals between photos is increasingly automated. However, the convolutional neural network models that have facilitated this change need many training images to generalize well. As a result, they have often been developed for individual species that meet this threshold. These single‐species methods might underperform, as they ignore potential similarities in identifying characteristics and the photo–identification process among species.

    In this paper, we introduce a multi‐species photo–identification model based on a state‐of‐the‐art method in human facial recognition, the ArcFace classification head. Our model uses two such heads to jointly classify species and identities, allowing species to share information and parameters within the network. As a demonstration, we trained this model with 50,796 images from 39 catalogues of 24 cetacean species, evaluating its predictive performance on 21,192 test images from the same catalogues. We further evaluated its predictive performance with two external catalogues entirely composed of identities that the model did not see during training.

    The model achieved a mean average precision (MAP) of 0.869 on the test set. Of these, 10 catalogues representing seven species achieved a MAP score over 0.95. For some species, there was notable variation in performance among catalogues, largely explained by variation in photo quality. Finally, the model appeared to generalize well, with the two external catalogues scoring similarly to their species' counterparts in the larger test set.

    From our cetacean application, we provide a list of recommendations for potential users of this model, focusing on those with cetacean photo–identification catalogues. For example, users with high quality images of animals identified by dorsal nicks and notches should expect near optimal performance. Users can expect decreasing performance for catalogues with higher proportions of indistinct individuals or poor quality photos. Finally, we note that this model is currently freely available as code in a GitHub repository and as a graphical user interface, with additional functionality for collaborative data management, via Happywhale.com.

     
    more » « less
  5. null (Ed.)
    By arbitraging among consumer comfort margins, buildings energy consumption can be changed by providing flexibility to grids. To manipulate the buildings energy consumption, a new contract-based approach to for multi-zone building heating, ventilation and air-conditioning (HVAC) systems is proposed. The approach includes the real-time markets by changing buildings optimal consumption pattern based on triggers sent by the aggregator. Also to decrease the energy consumption of buildings, the user is allowed to select the time-slots and rewards are provided to the user for aggregating flexibility. The aggregator bundles flexibility from the buildings at different time-slots and sells in real-time markets. The idea in aggregator's problem is to maximize aggregator's profits by selling flexibility in real-time markets (RTM) while ensuring the provisioning of flexibility from the buildings through incentives. To address this problem, we formulate it as a distributed optimization problem and then provide a method to solve it which provides good scalability, a requirement for large commercial buildings with multiple zones to participate in RTM. We illustrate the scalability and performance of the contract-based approach and solution technique in a building with 200 zones. Also, user participation based on their time-preferences is included in the proposed optimization. Finally, a scalable technique is shown which can be adopted in existing building automation systems. 
    more » « less