The Koopman operator theory provides a global linearization framework for general nonlinear dynamics, offering significant advantages for system analysis and control. However, practical applications typically involve approximating the infinite-dimensional Koopman operator in a lifted space spanned by a finite set of observable functions. The accuracy of this approximation is the key to effective Koopman operator-based analysis and control methods, generally improving as the dimension of the observables increases. Nonetheless, this increase in dimensionality significantly escalates both storage requirements and computational complexity, particularly for high-dimensional systems, thereby limiting the applicability of these methods in real-world problems. In this paper, we address this problem by reformulating the Koopman operator in tensor format to break the curse of dimensionality associated with its approximation through tensor decomposition techniques. This effective reduction in complexity enables the selection of high-dimensional observable functions and the handling of large-scale datasets, which leads to a precise linear prediction model utilizing the tensor-based Koopman operator. Furthermore, we propose an optimal control framework with the tensor-based Koopman operator, which adeptly addresses the nonlinear dynamics and constraints by linear reformulation in the lifted space and significantly reduces the computational complexity through separated representation of the tensor structure.
more »
« less
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
This work serves as a bridge between two approaches to analysis of dynamical systems: the local, geometric analysis, and the global operator theoretic Koopman analysis. We explicitly construct vector fields where the instantaneous Lyapunov exponent field is a Koopman eigenfunction. Restricting ourselves to polynomial vector fields to make this construction easier, we find that such vector fields do exist, and we explore whether such vector fields have a special structure, thus making a link between the geometric theory and the transfer operator theory.
more »
« less
- PAR ID:
- 10301681
- Date Published:
- Journal Name:
- Mathematics
- Volume:
- 9
- Issue:
- 21
- ISSN:
- 2227-7390
- Page Range / eLocation ID:
- 2731
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method.more » « less
-
A global modeling methodology based on Koopman operator theory for the dynamics of rigid bodies that make and break contact is presented. Traditionally, robotic systems that contact with their environment are represented as a system comprised of multiple dynamic equations that are switched depending on the contact state. This switching of governing dynamics has been a challenge in both task planning and control. Here, a Koopman lifting linearization approach is presented to subsume multiple dynamics such that no explicit switching is required for examining the dynamic behaviors across diverse contact states. First, it is shown that contact/noncontact transitions are continuous at a microscopic level. This allows for the application of Koopman operator theory to the class of robotic systems that repeat contact/non-contact transitions. Second, an effective method for finding Koopman operator observables for capturing rapid changes to contact forces is presented. The method is applied to the modeling of dynamic peg insertion where a peg collides against and bounces on the chamfer of the hole. Furthermore, the method is applied to the dynamic modeling of a sliding object subject to complex friction and damping properties. Segmented dynamic equations are unified with the Koopman modeling method.more » « less
-
Developing an accurate dynamic model for an Autonomous Underwater Vehicle (AUV) is challenging due to the diverse array of forces exerted on it in an underwater environment. These forces include hydrodynamic effects such as drag, buoyancy, and added mass. Consequently, achieving precision in predicting the AUV's behavior requires a comprehensive understanding of these dynamic forces and their interplay. In our research, we have devised a linear data-driven dynamic model rooted in Koopman's theory. The cornerstone of leveraging Koopman theory lies in accurately estimating the Koopman operator. To achieve this, we employ the dynamic mode decomposition (DMD) method, which enables the generation of the Koopman operator. We have developed a Fractional Sliding Mode Control (FSMC) method to provide robustness and high tracking performance for AUV systems. The efficacy of the proposed controller has been verified through simulation results.more » « less
-
Abstract The Madden‐Julian Oscillation (MJO), the dominant mode of tropical intraseasonal variability, is commonly identified using the realtime multivariate MJO (RMM) index based on joint empirical orthogonal function (EOF) analysis of near‐equatorial upper and lower level zonal winds and outgoing longwave radiation. Here, in place of conventional EOFs, we apply an operator‐theoretic formalism based on dynamic systems theory (the Koopman operator) to extract an analog to RMM that exhibits certain features that refine the characterization and predictability of the MJO. In particular, the spectrum of Koopman operator eigenfunctions, with eigenvalues corresponding to mode periods, contains a leading intraseasonal mode with period of ∼50 days. Moreover, the amplitude of this leading intraseasonal eigenfunction exhibits a seasonal modulation clearly peaked in boreal winter. Finally, the phase space formed by the complex Koopman MJO eigenfunction exhibits a smoother temporal evolution and higher degree of autocorrelation than RMM, which may contribute to enhanced predictive skill.more » « less
An official website of the United States government

