skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting the Geographic Range of an Invasive Livestock Disease across the Contiguous USA under Current and Future Climate Conditions
Vesicular stomatitis (VS) is the most common vesicular livestock disease in North America. Transmitted by direct contact and by several biting insect species, this disease results in quarantines and animal movement restrictions in horses, cattle and swine. As changes in climate drive shifts in geographic distributions of vectors and the viruses they transmit, there is considerable need to improve understanding of relationships among environmental drivers and patterns of disease occurrence. Multidisciplinary approaches integrating pathology, ecology, climatology, and biogeophysics are increasingly relied upon to disentangle complex relationships governing disease. We used a big data model integration approach combined with machine learning to estimate the potential geographic range of VS across the continental United States (CONUS) under long-term mean climate conditions over the past 30 years. The current extent of VS is confined to the western portion of the US and is related to summer and winter precipitation, winter maximum temperature, elevation, fall vegetation biomass, horse density, and proximity to water. Comparison with a climate-only model illustrates the importance of current processes-based parameters and identifies regions where uncertainty is likely to be greatest if mechanistic processes change. We then forecast shifts in the range of VS using climate change projections selected from CMIP5 climate models that most realistically simulate seasonal temperature and precipitation. Climate change scenarios that altered climatic conditions resulted in greater changes to potential range of VS, generally had non-uniform impacts in core areas of the current potential range of VS and expanded the range north and east. We expect that the heterogeneous impacts of climate change across the CONUS will be exacerbated with additional changes in land use and land cover affecting biodiversity and hydrological cycles that are connected to the ecology of insect vectors involved in VS transmission.  more » « less
Award ID(s):
1832194 2025166
PAR ID:
10302259
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Climate
Volume:
9
Issue:
11
ISSN:
2225-1154
Page Range / eLocation ID:
159
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Ticks rank high among arthropod vectors in terms of numbers of infectious agents that they transmit to humans, including Lyme disease, Rocky Mountain spotted fever, Colorado tick fever, human monocytic ehrlichiosis, tularemia, and human granulocytic anaplasmosis. Increasing temperature is suspected to affect tick biting rates and pathogen developmental rates, thereby potentially increasing risk for disease incidence. Tick distributions respond to climate change, but how their geographic ranges will shift in future decades and how those shifts may translate into changes in disease incidence remain unclear. In this study, we have assembled correlative ecological niche models for eight tick species of medical or veterinary importance in North America (Ixodes scapularis, I. pacificus, I. cookei, Dermacentor variabilis, D. andersoni, Amblyomma americanum, A. maculatum, and Rhipicephalus sanguineus), assessing the distributional potential of each under both present and future climatic conditions. Our goal was to assess whether and how species’ distributions will likely shift in coming decades in response to climate change. We interpret these patterns in terms of likely implications for tick-associated diseases in North America. 
    more » « less
  2. Ai, Zhipin (Ed.)
    Snowpacks are changing in northeastern North America as the regional climate warms, yet the relative influence of changes in precipitation compared to changes in ablation on snowpacks is poorly understood. We use 56 years of weekly snow water equivalent (SWE) measurements from three locations within a study site which vary in elevation and aspect, paired with adjacent daily climate measurements, to investigate relationships between climate and snowpack onset, maximum, and disappearance. Maximum snowpack size and snowpack duration are shrinking at all sites, at rates ranging from 4.3 days/decade at the coldest site to 9.6 days/decade at the warmest site. The shorter snowpack duration at all sites results from an earlier snowpack disappearance, stemming largely from reduced winter maximum snowpack sizes. Trends in snowpack establishment dates vary, with the south-facing site showing a trend toward later establishment but the two north-facing sites showing no change. The date of the maximum snowpack size varies by aspect and elevation but is not changing at any site. Using a 0° C threshold for frozen vs. liquid precipitation, we only observed a decrease in the proportion of precipitation falling in frozen form at the warmer, south-facing site in the winter period. In contrast, the total weekly snowpack ablation in the winter period has been increasing at least marginally at each site, even at sites which do not show increases in thawing conditions. Ablation increases range from 0.4 cm/decade at the warmest site, to 1.4 and 1.2 cm/decade at the north-facing sites. The south-facing site shows only marginally significant trends in total winter ablation, which we interpret as being limited by the smaller snowpack at this site. Overall, we conclude that rising air temperatures are leading to warmer, more sensitive snowpacks and this change becomes evident before those temperatures lead to changes in precipitation form. 
    more » « less
  3. Mediterranean-type climates are defined by temperate, wet winters, and hot or warm dry summers and exist at the western edges of five continents in locations determined by the geography of winter storm tracks and summer subtropical anticyclones. The climatology, variability, and long-term changes in winter precipitation in Mediterranean-type climates, and the mechanisms for model-projected near-term future change, are analyzed. Despite commonalities in terms of location in the context of planetary-scale dynamics, the causes of variability are distinct across the regions. Internal atmospheric variability is the dominant source of winter precipitation variability in all Mediterranean-type climate regions, but only in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of variability is a notable influence only for California and Chile. As a consequence, potential predictability of winter precipitation variability in the regions is low. In all regions, the trend in winter precipitation since 1901 is similar to that which arises as a response to changes in external forcing in the models participating in phase 5 of the Coupled Model Intercomparison Project. All Mediterranean-type climate regions, except in North America, have dried and the models project further drying over coming decades. In the Northern Hemisphere, dynamical processes are responsible: development of a winter ridge over the Mediterranean that suppresses precipitation and of a trough west of the North American west coast that shifts the Pacific storm track equatorward. In the Southern Hemisphere, mixed dynamic–thermodynamic changes are important that place a minimum in vertically integrated water vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate regions inland. 
    more » « less
  4. Abstract Humans have greatly altered earth’s terrestrial water cycle with the majority of fresh water being used for agriculture. Irrigation changes spatial and temporal water availability and alters mosquito abundance and phenology. Previous studies evaluating the effect of irrigation on mosquito abundance and mosquito-borne disease have shown inconsistent results and little is known about the effect of irrigation on variability in mosquito abundance. We examined the effect of irrigation, climate and land cover on mosquito abundance and human West Nile virus (WNV) disease cases across California. Irrigation made up nearly a third of total water inputs, and exceeded precipitation in some regions. Abundance of two key vectors of several arboviruses, including WNV,Culex tarsalisand the Culex pipienscomplex, increased 17–21-fold with irrigation. Irrigation reduced seasonal variability inC. tarsalisabundance by 36.1%. Human WNV incidence increased with irrigation, which explained more than a third (34.2%) of the variation in WNV incidence among California counties. These results suggest that irrigation can increase and decouple mosquito populations from natural precipitation variability, resulting in sustained and increased disease burdens. Shifts in precipitation due to climate change are likely to result in increased irrigation in many arid regions which could increase mosquito populations and disease. 
    more » « less
  5. Abstract Lyme disease is the most common vector‐borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county‐level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate–disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county‐level heterogeneity, but the strongest climate–disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change‐induced increases in Lyme disease burden. 
    more » « less