skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Higher order neural processing with input-adaptive dynamic weights on MoS2 memtransistor crossbars
The increasing complexity of deep learning systems has pushed conventional computing technologies to their limits. While the memristor is one of the prevailing technologies for deep learning acceleration, it is only suited for classical learning layers where only two operands, namely weights and inputs, are processed simultaneously. Meanwhile, to improve the computational efficiency of deep learning for emerging applications, a variety of non-traditional layers requiring concurrent processing of many operands are becoming popular. For example, hypernetworks improve their predictive robustness by simultaneously processing weights and inputs against the application context. Two-electrode memristor grids cannot directly map emerging layers’ higher-order multiplicative neural interactions. Addressing this unmet need, we present crossbar processing using dual-gated memtransistors based on two-dimensional semiconductor MoS 2 . Unlike the memristor, the resistance states of memtransistors can be persistently programmed and can be actively controlled by multiple gate electrodes. Thus, the discussed memtransistor crossbar enables several advanced inference architectures beyond a conventional passive crossbar. For example, we show that sneak paths can be effectively suppressed in memtransistor crossbars, whereas they limit size scalability in a passive memristor crossbar. Similarly, exploiting gate terminals to suppress crossbar weights dynamically reduces biasing power by ∼20% in memtransistor crossbars for a fully connected layer of AlexNet. On emerging layers such as hypernetworks, collocating multiple operations within the same crossbar cells reduces operating power by ∼ 15 × on the considered network cases.  more » « less
Award ID(s):
2106824 2106964
PAR ID:
10350571
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Electronic Materials
Volume:
2
ISSN:
2673-9895
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuromorphic hardware promises to revolutionize information technology with brain-inspired parallel processing, in-memory computing, and energy-efficient implementation of artificial intelligence and machine learning. In particular, two-dimensional (2D) memtransistors enable gate-tunable non-volatile memory, bio-realistic synaptic phenomena, and atomically thin scaling. However, previously reported 2D memtransistors have not achieved low operating voltages without compromising gate-tunability. Here, we overcome this limitation by demonstrating MoS2 memtransistors with short channel lengths < 400 nm, low operating voltages < 1 V, and high field-effect switching ratios > 10,000 while concurrently achieving strong memristive responses. This functionality is realized by fabricating back-gated memtransistors using highly polycrystalline monolayer MoS2 channels on high-κ Al2O3 dielectric layers. Finite-element simulations confirm enhanced electrostatic modulation near the channel contacts, which reduces operating voltages without compromising memristive or field-effect switching. Overall, this work demonstrates a pathway for reducing the size and power consumption of 2D memtransistors as is required for ultrahigh-density integration. 
    more » « less
  2. In this paper, we propose a new approach for robust compressive sensing (CS) using memristor crossbars that are constructed by recently invented memristor devices. The exciting features of a memristor crossbar, such as high density, low power and great scalability, make it a promising candidate to perform large-scale matrix operations. To apply memristor crossbars to solve a robust CS problem, the alternating directions method of multipliers (ADMM) is employed to split the original problem into subproblems that involve the solution of systems of linear equations. A system of linear equations can then be solved using memristor crossbars with astonishing O(1) time complexity. We also study the impact of hardware variations on the memristor crossbar based CS solver from both theoretical and practical points of view. The resulting overall complexity is given by O(n), which achieves O(n2.5) speed-up compared to the state-of-the-art software approach. Numerical results are provided to illustrate the effectiveness of the proposed CS solver. 
    more » « less
  3. Abstract Artificial neural networks have demonstrated superiority over traditional computing architectures in tasks such as pattern classification and learning. However, they do not measure uncertainty in predictions, and hence they can make wrong predictions with high confidence, which can be detrimental for many mission-critical applications. In contrast, Bayesian neural networks (BNNs) naturally include such uncertainty in their model, as the weights are represented by probability distributions (e.g. Gaussian distribution). Here we introduce three-terminal memtransistors based on two-dimensional (2D) materials, which can emulate both probabilistic synapses as well as reconfigurable neurons. The cycle-to-cycle variation in the programming of the 2D memtransistor is exploited to achieve Gaussian random number generator-based synapses, whereas 2D memtransistor based integrated circuits are used to obtain neurons with hyperbolic tangent and sigmoid activation functions. Finally, memtransistor-based synapses and neurons are combined in a crossbar array architecture to realize a BNN accelerator for a data classification task. 
    more » « less
  4. As one of the most promising future fundamental devices, memristor has its unique advantage on implementing low-power high-speed matrix multiplication. Taking advantage of the high performance on basic matrix operation and flexibilitys of memristor crossbars, in this paper, we investigate both discrete Fourier transformation (DFT) and miltiple-input and multi-output (MIMO) detection unit in baseband processor. We reformulate the signal processing algorithms and model structures into a matrix-based framework, and present a memristor crossbar based DFT module design and MIMO detector module design. For both designs, experimental results demonstrate significant gains in speed and power efficiency compared with traditional CMOS-based designs. 
    more » « less
  5. Memristors have recently received significant attention as device-level components for building a novel generation of computing systems. These devices have many promising features, such as non-volatility, low power consumption, high density, and excellent scalability. The ability to control and modify biasing voltages at memristor terminals make them promising candidates to efficiently perform matrix-vector multiplications and solve systems of linear equations. In this article, we discuss how networks of memristors arranged in crossbar arrays can be used for efficiently solving optimization and machine learning problems. We introduce a new memristor-based optimization framework that combines the computational merits of memristor crossbars with the advantages of an operator splitting method, the alternating direction method of multipliers (ADMM). Here, ADMM helps in splitting a complex optimization problem into subproblems that involve the solution of systems of linear equations. The strength of this framework is shown by applying it to linear programming, quadratic programming, and sparse optimization. In addition to ADMM, implementation of a customized power iteration method for eigenvalue/eigenvector computation using memristor crossbars is discussed. The memristor-based power iteration method can further be applied to principal component analysis. The use of memristor crossbars yields a significant speed-up in computation, and thus, we believe, has the potential to advance optimization and machine learning research in artificial intelligence. 
    more » « less