skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New perspectives on covariant quantum error correction
Covariant codes are quantum codes such that a symmetry transformation on the logical system could be realized by a symmetry transformation on the physical system, usually with limited capability of performing quantum error correction (an important case being the Eastin–Knill theorem). The need for understanding the limits of covariant quantum error correction arises in various realms of physics including fault-tolerant quantum computation, condensed matter physics and quantum gravity. Here, we explore covariant quantum error correction with respect to continuous symmetries from the perspectives of quantum metrology and quantum resource theory, establishing solid connections between these formerly disparate fields. We prove new and powerful lower bounds on the infidelity of covariant quantum error correction, which not only extend the scope of previous no-go results but also provide a substantial improvement over existing bounds. Explicit lower bounds are derived for both erasure and depolarizing noises. We also present a type of covariant codes which nearly saturates these lower bounds.  more » « less
Award ID(s):
1936118 1640959
PAR ID:
10308913
Author(s) / Creator(s):
 ;  ;  
Date Published:
Journal Name:
Quantum
Volume:
5
ISSN:
2521-327X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum error correction (QEC) plays a crucial role in correcting noise and paving the way for fault-tolerant quantum computing. This field has seen significant advancements, with new quantum error correction codes emerging regularly to address errors effectively. Among these, topological codes, particularly surface codes, stand out for their low error thresholds and feasibility for implementation in large-scale quantum computers. However, these codes are restricted to encoding a single qubit. Lattice surgery is crucial for enabling interactions among multiple encoded qubits or between the lattices of a surface code, ensuring that its sophisticated error-correcting features are maintained without significantly increasing the operational overhead. Lattice surgery is pivotal for scaling QECCs across more extensive quantum systems. Despite its critical importance, comprehending lattice surgery is challenging due to its inherent complexity, demanding a deep understanding of intricate quantum physics and mathematical concepts. This paper endeavors to demystify lattice surgery, making it accessible to those without a profound background in quantum physics or mathematics. This work explores surface codes, introduces the basics of lattice surgery, and demonstrates its application in building quantum gates and emulating multi-qubit circuits. 
    more » « less
  2. Quantum low-density parity-check codes are a promising approach to fault-tolerant quantum computation, offering potential advantages in rate and decoding efficiency. Quantum Margulis codes are a new class of QLDPC codes derived from Margulis’ classical LDPC construction via the two-block group algebra framework. We show that quantum Margulis codes, unlike bivariate bicycle codes, which require ordered statistics decoding for effective error correction, can be efficiently decoded using a standard min-sum decoder with linear complexity, when decoded under depolarizing noise. This is attributed to their Tanner graph structure, which does not exhibit group symmetry, thereby mitigating the well-known problem of error degeneracy in QLDPC decoding. To further enhance performance, we propose an algorithm for constructing 2BGA codes with controlled girth, ensuring a minimum girth of 6 or 8, and use it to generate several quantum Margulis codes of length 240 and 642. We validate our approach through numerical simulations, demonstrating that quantum Margulis codes behave significantly better than BB codes in the error floor region, under min-sum decoding. 
    more » « less
  3. We develop finite-dimensional versions of the quantum error-correcting codes proposed by Albert, Covey, and Preskill (ACP) for continuous-variable quantum computation on configuration spaces with non-Abelian symmetry groups. Our codes can be realized by a charged particle in a Landau level on a spherical geometry, in contrast to the planar Landau level realization of the qudit codes of Gottesman, Kitaev, and Preskill (GKP), or more generally by spin coherent states. Our quantum error-correction scheme is inherently approximate, and the encoded states may be easier to prepare than those of GKP or ACP. 
    more » « less
  4. Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit. 
    more » « less
  5. Quantum error correction codes (QECCs) are essential for reliable quantum computing as they protect quantum states against noise and errors. Limited research has explored the resilience of QECCs to biased noise, critical for selecting optimal codes. We examine how different noise types impact QECCs, considering the varying susceptibility of quantum systems to specific errors. Our goal is to identify opportunities to minimize the resources—or overhead—needed for effective error correction. We conduct a detailed study on two QECCs—rotated and unrotated surface codes—under various noise models using simulations. Rotated surface codes generally perform better due to their simplicity and lower qubit overhead. They exceed the noise threshold of current quantum processors, making them more effective at lower error rates. This study highlights a hierarchy in surface code implementation based on resource demand, consistently observed across both code types. Our analysis ranks the code-capacity model as the most pessimistic and the circuit-level model as the most realistic, mapping error thresholds that show surface code advantages. Additionally, higher code distances improve performance without excessively increasing qubit overhead. Tailoring surface codes to align with the target logical error rate and the biased physical error profile is crucial for optimizing reliability and resource use. 
    more » « less