Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus. 
                        more » 
                        « less   
                    
                            
                            Robust Auctions for Revenue via Enhanced Competition
                        
                    
    
            Most results in revenue-maximizing mechanism design hinge on “getting the price right”—selling goods to bidders at prices low enough to encourage a sale but high enough to garner nontrivial revenue. This approach is difficult to implement when the seller has little or no a priori information about bidder valuations or when the setting is sufficiently complex, such as matching markets with heterogeneous goods. In this paper, we apply a robust approach to designing auctions for revenue. Instead of relying on prior knowledge regarding bidder valuations, we “let the market do the work” and let prices emerge from competition for scarce goods. We analyze the revenue guarantees of one of the simplest imaginable implementations of this idea: first, we enhance competition in the market by increasing demand (or alternatively, by limiting supply), and second, we run a standard second price (Vickrey) auction. In their renowned work from 1996 , Bulow and Klemperer [Bulow J, Klemperer P (1996) Auctions vs. negotiations. Amer. Econom. Rev. 86(1):180–194.] apply this method to markets with single goods. As our main result, we give the first application beyond single-parameter settings, proving that, simultaneously for many valuation distributions, this method achieves expected revenue at least as good as the optimal revenue in the original market. Our robust and simple approach provides a handle on the elusive optimal revenue in multiitem matching markets and shows when the use of welfare-maximizing Vickrey auctions is justified, even if revenue is a priority. By establishing quantitative tradeoffs, our work provides guidelines for a seller in choosing among two different revenue-extracting strategies: sophisticated pricing based on market research or advertising to draw additional bidders. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2006737
- PAR ID:
- 10310906
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 68
- Issue:
- 4
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)We characterize revenue maximizing mechanisms in a common value environment where the value of the object is equal to the highest of the bidders' independent signals. If the revenue maximizing solution is to sell the object with probability 1, then an optimal mechanism is simply a posted price, namely, the highest price such that every type of every bidder is willing to buy the object. If the object is optimally sold with probability less than 1, then optimal mechanisms skew the allocation toward bidders with lower signals. The resulting allocation induces a “winner's blessing,” whereby the expected value conditional on winning is higher than the unconditional expectation. By contrast, standard auctions that allocate to the bidder with the highest signal (e.g., the first‐price, second‐price, or English auctions) deliver lower revenue because of the winner's curse generated by the allocation. Our qualitative results extend to more general common value environments with a strong winner's curse.more » « less
- 
            The design of multi-item, multi-bidder auctions involves a delicate balancing act of economic objectives, bidder incentives, and real-world complexities. Efficient auctions, that is, auctions that allocate items to maximize total bidder value, are practically desirable since they promote the most economically beneficial use of resources. Arguably the biggest drawback of efficient auctions, however, is their potential to generate very low revenue. In this work, we show how the auction designer can artificially inject competition into the auction to boost revenue while striving to maintain efficiency. First, we invent a new auction family that enables the auction designer to specify competition in a precise, expressive, and interpretable way. We then introduce a new model of bidder behavior and individual rationality to understand how bidders act when prices are too competitive. Next, under our bidder behavior model, we use our new competitive auction class to derive the globally revenue-optimal efficient auction under two different knowledge models for the auction designer: knowledge of full bidder value distributions and knowledge of bidder value quantiles. Finally, we study a third knowledge model for the auction designer: knowledge of historical bidder valuation data. In this setting we present sample and computationally efficient learning algorithms that find high-revenue probably-efficient competitive auctions from bidder data. Our learning algorithms are instance adaptive and can be run in parallel across bidders, unlike most prior approaches to data-driven auction design.more » « less
- 
            We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of additive bidders whose values for heterogeneous items are drawn independently. For any such instance and any , we show that it is possible to learn an -Bayesian Incentive Compatible auction whose expected revenue is within of the optimal -BIC auction from only polynomially many samples. Our fully nonparametric approach is based on ideas that hold quite generally and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that are not necessarily even subadditive , and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well understood, our corollary for this case extends slightly the state of the art.more » « less
- 
            We consider the sample complexity of revenue maximization for multiple bidders in unrestricted multi-dimensional settings. Specifically, we study the standard model of $${n}$$ additive bidders whose values for $${m}$$ heterogeneous items are drawn independently. For any such instance and any $${\varepsilon > 0}$$, we show that it is possible to learn an $${\varepsilon}$$-Bayesian Incentive Compatible auction whose expected revenue is within $${\varepsilon}$$ of the optimal $${\varepsilon}$$-BIC auction from only polynomially many samples. Our approach is based on ideas that hold quite generally, and completely sidestep the difficulty of characterizing optimal (or near-optimal) auctions for these settings. Therefore, our results easily extend to general multi-dimensional settings, including valuations that aren't necessarily even subadditive, and arbitrary allocation constraints. For the cases of a single bidder and many goods, or a single parameter (good) and many bidders, our analysis yields exact incentive compatibility (and for the latter also computational efficiency). Although the single-parameter case is already well-understood, our corollary for this case extends slightly the state-of-the-art.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    