skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: tspDB: Time Series Predict DB
A major bottleneck of the current Machine Learning (ML) workflow is the time consuming, error prone engineering required to get data from a datastore or a database (DB) to the point an ML algorithm can be applied to it. This is further exacerbated since ML algorithms are now trained on large volumes of data, yet we need predictions in real-time, especially in a variety of time-series applications such as finance and real-time control systems. Hence, we explore the feasibility of directly integrating prediction functionality on top of a data store or DB. Such a system ideally: (i) provides an intuitive prediction query interface which alleviates the unwieldy data engineering; (ii) provides state-of-the-art statistical accuracy while ensuring incremental model update, low model training time and low latency for making predictions. As the main contribution we explicitly instantiate a proof-of-concept, tspDB which directly integrates with PostgreSQL. We rigorously test tspDB’s statistical and computational performance against the state-of-the-art time series algorithms, including a Long-Short-Term-Memory (LSTM) neural network and DeepAR (industry standard deep learning library by Amazon). Statistically, on standard time series benchmarks, tspDB outperforms LSTM and DeepAR with 1.1-1.3x higher relative accuracy. Computationally, tspDB is 59-62x and 94-95x faster compared to LSTM and DeepAR in terms of median ML model training time and prediction query latency, respectively. Further, compared to PostgreSQL’s bulk insert time and its SELECT query latency, tspDB is slower only by 1.3x and 2.6x respectively. That is, tspDB is a real-time prediction system in that its model training / prediction query time is similar to just inserting, reading data from a DB. As an algorithmic contribution, we introduce an incremental multivariate matrix factorization based time series method, which tspDB is built off. We show this method also allows one to produce reliable prediction intervals by accurately estimating the time-varying variance of a time series, thereby addressing an important problem in time series analysis.  more » « less
Award ID(s):
1634259 1523546
PAR ID:
10313410
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
133
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Milling is a critical manufacturing process to produce high-value components in aerospace, tooling, and automotive industries. However, milling is prone to chatter, a severe vibration that damages surface quality, cutting tools, and machines. Traditional experimental and mechanistic methods of chatter prediction have significant limitations. This study presents a data-driven machine learning (ML) model to predict and quantify milling chatter directly based on time-series vibration data. Three ML models, including hybrid long short-term memory (LSTM)—fully convolutional network (FCN) model, gated recurrent unit (GRU)—FCN model, and temporal convolutional network (TCN) models, have been developed and verified by incorporating milling parameters to enhance prediction accuracy and stability. Among the proposed models, the best-performing ML model (GRU-FCN) demonstrates strong performance in chatter prediction and severity quantification, providing actionable insights with improved computational efficiency. The integration of milling parameters into the ML model notably enhances the prediction accuracy and stability, proving particularly effective in real-time monitoring scenarios. 
    more » « less
  2. We present a novel multi-level representation of time series called OM3 that facilitates efficient interactive progressive visualization of large data stored in a database and supports various interactions such as resizing, panning, zooming, and visual query. Based on our proposed line-segment aggregation, this representation can produce error-free line visualizations that preserve the shape of a time series in windows of arbitrary sizes. To reduce the interaction latency, we develop an incremental tree-based query strategy to support progressive visualizations, allowing a finer control on the accuracy-time tradeoff. We quantitatively compare OM3 with state-of-the-art methods, including a method implemented on a leading time-series database InfluxDB, in two settings with databases residing either in the local area network or on the cloud. Results show that OM^3 maintains a low latency within 300~ms on the web browser and a high data reduction ratio regardless of the data size (ranging from millions to billions of records), achieving around 1,000 times faster than the state-of-the-art methods on the largest dataset experimented with. 
    more » « less
  3. This paper advances machine learning (ML)-based streamflow prediction by strategically selecting rainfall events, introducing a new loss function, and addressing rainfall forecast uncertainties. Focusing on the Iowa River Basin, we applied the stochastic storm transposition (SST) method to create realistic rainfall events, which were input into a hydrological model to generate corresponding streamflow data for training and testing deterministic and probabilistic ML models. Long short-term memory (LSTM) networks were employed to predict streamflow up to 12 h ahead. An active learning approach was used to identify the most informative rainfall events, reducing data generation effort. Additionally, we introduced a novel asymmetric peak loss function to improve peak streamflow prediction accuracy. Incorporating rainfall forecast uncertainties, our probabilistic LSTM model provided uncertainty quantification for streamflow predictions. Performance evaluation using different metrics improved the accuracy and reliability of our models. These contributions enhance flood forecasting and decision-making while significantly reducing computational time and costs. 
    more » « less
  4. Machine and deep learning-based algorithms are the emerging approaches in addressing prediction problems in time series. These techniques have been shown to produce more accurate results than conventional regression-based modeling. It has been reported that artificial Recurrent Neural Networks (RNN) with memory, such as Long Short-Term Memory (LSTM), are superior compared to Autoregressive Integrated Moving Average (ARIMA) with a large margin. The LSTM-based models incorporate additional “gates” for the purpose of memorizing longer sequences of input data. The major question is that whether the gates incorporated in the LSTM architecture already offers a good prediction and whether additional training of data would be necessary to further improve the prediction. Bidirectional LSTMs (BiLSTMs) enable additional training by traversing the input data twice (i.e., 1) left-to-right, and 2) right-to-left). The research question of interest is then whether BiLSTM, with additional training capability, outperforms regular unidirectional LSTM. This paper reports a behavioral analysis and comparison of BiLSTM and LSTM models. The objective is to explore to what extend additional layers of training of data would be beneficial to tune the involved parameters. The results show that additional training of data and thus BiLSTM-based modeling offers better predictions than regular LSTM-based models. More specifically, it was observed that BiLSTM models provide better predictions compared to ARIMA and LSTM models. It was also observed that BiLSTM models reach the equilibrium much slower than LSTM-based models. 
    more » « less
  5. Abstract Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O–SiO2glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training. 
    more » « less