Abstract Battery electric vehicles (BEVs) have emerged as a promising alternative to traditional internal combustion engine (ICE) vehicles due to benefits in improved fuel economy, lower operating cost, and reduced emission. BEVs use electric motors rather than fossil fuels for propulsion and typically store electric energy in lithium-ion cells. With rising concerns over fossil fuel depletion and the impact of ICE vehicles on the climate, electric mobility is widely considered as the future of sustainable transportation. BEVs promise to drastically reduce greenhouse gas emissions as a result of the transportation sector. However, mass adoption of BEVs faces major barriers due to consumer worries over several important battery-related issues, such as limited range, long charging time, lack of charging stations, and high initial cost. Existing solutions to overcome these barriers, such as building more charging stations, increasing battery capacity, and stationary vehicle-to-vehicle (V2V) charging, often suffer from prohibitive investment costs, incompatibility to existing BEVs, or long travel delays. In this paper, we propose P eer-to- P eer C ar C harging (P2C2), a scalable approach for charging BEVs that alleviates the need for elaborate charging infrastructure. The central idea is to enable BEVs to share charge among each other while in motion through coordination with a cloud-based control system. To re-vitalize a BEV fleet, which is continuously in motion, we introduce Mobile Charging Stations (MoCS), which are high-battery-capacity vehicles used to replenish the overall charge in a vehicle network. Unlike existing V2V charging solutions, the charge sharing in P2C2 takes place while the BEVs are in-motion, which aims at minimizing travel time loss. To reduce BEV-to-BEV contact time without increasing manufacturing costs, we propose to use multiple batteries of varying sizes and charge transfer rates. The faster but smaller batteries are used for charge transfer between vehicles, while the slower but larger ones are used for prolonged charge storage. We have designed the overall P2C2 framework and formalized the decision-making process of the cloud-based control system. We have evaluated the effectiveness of P2C2 using a well-characterized simulation platform and observed dramatic improvement in BEV mobility. Additionally, through statistical analysis, we show that a significant reduction in carbon emission is also possible if MoCS can be powered by renewable energy sources.
more »
« less
Control and Loss Analysis of a Solid State Transformer Based DC Extreme Fast Charger
The increasing demand for electric vehicles, due to advantages such as higher energy efficiency, lower fuel costs, and less vehicle maintenance, is expected to drive the need for electric vehicle charging infrastructure. Due to their reduced size and weight, high power and scalable compact solid state transformers (SST) are growing in popularity. This study presents the total loss analysis and control design for a direct grid connected single-phase SST for a fast charging station. A control strategy to achieve robust current control, DC voltage and power balancing, and power loss minimization (PLM) is implemented for this system. Detailed analyses and simulation results obtained from MATLAB/Simulink are given to prove the effectiveness of the proposed control techniques.
more »
« less
- Award ID(s):
- 1939124
- PAR ID:
- 10313566
- Date Published:
- Journal Name:
- 2021 IEEE Transportation Electrification Conference and Expo
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper proposes a solar energy harvesting based modular battery balance system for electric vehicles. The proposed system is designed to charge the battery module with minimum SOC/voltage by solar power during charging and discharging. With the solar power input, the useful energy of the battery can be improved while vehicle driving. For vehicle charging, the charging energy from grid and total charging time can be reduced as well. Simulation analysis shows that for a 50Ah rated battery pack, the overall pure electric drive mileage can be improved by 22.9%, while consumed grid energy and total charging time can be reduced by 9.6% and 9.3% respectively. In addition, the battery life can be improved around 10%~11%. The prototype design and test of a 48V battery pack vehicle consisting of four 12V battery modules are carried out. The experimental results validate that the system has good modular balance performance for the 100Ah battery modules with 5~7A charging current from solar power, and the overall usable battery energy has been increased.more » « less
-
null (Ed.)Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge. Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficient alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery.more » « less
-
Cities around the world are increasingly promoting electric vehicles (EV) to reduce and ultimately eliminate greenhouse gas emissions. A huge number of EVs will put unprecedented stress on the power grid. To efficiently serve the increased charging load, these EVs need to be charged in a coordinated fashion. One promising coordination strategy is vehicle-to-vehicle (V2V) charging coordination, enabling EVs to sell their surplus energy in an ad-hoc, peer to peer manner. This paper introduces an Information Centric Networking (ICN)-based protocol to support ad-hoc V2V charging coordination (V2V-CC). Our evaluations demonstrate that V2V-CC can provide added flexibility, fault tolerance, and reduced communication latency than a conventional centralized cloud based approach. We show that V2V-CC can achieve a 93% reduction in protocol completion time compared to a conventional approach. We also show that V2V-CC also works well under extreme packet loss, making it ideal for V2V charging coordination.more » « less
-
The integration of electric vehicles (EVs) into the electric power distribution system poses numerous challenges and opportunities for optimizing energy management and system operations. Electric vehicle grid interfaces (EVGIs), essentially bidirectional power converters, allow for charging/grid-to-vehicle (G2V) and discharging/vehicle-to-grid (V2G) power transfers. A power dispatch estimation (PDE) model for V2G, based on availability of EVs in a distribution system and capabilities of the distribution system, is needed to assist in grid operations. This paper presents the development of a PDE model based on nodal power flows to capture the complex spatiotemporal dependencies inherent in G2V and V2G patterns. The hierarchical structure of a distribution system, feeder to EVGI node, is taken into consideration for PDE. Typical PDE estimation results are presented for the IEEE 34 test node feeder distribution system allocated with EVGIs.more » « less
An official website of the United States government

