skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study
Background Research has shown the feasibility of human activity recognition using wearable accelerometer devices. Different studies have used varying numbers and placements for data collection using sensors. Objective This study aims to compare accuracy performance between multiple and variable placements of accelerometer devices in categorizing the type of physical activity and corresponding energy expenditure in older adults. Methods In total, 93 participants (mean age 72.2 years, SD 7.1) completed a total of 32 activities of daily life in a laboratory setting. Activities were classified as sedentary versus nonsedentary, locomotion versus nonlocomotion, and lifestyle versus nonlifestyle activities (eg, leisure walk vs computer work). A portable metabolic unit was worn during each activity to measure metabolic equivalents (METs). Accelerometers were placed on 5 different body positions: wrist, hip, ankle, upper arm, and thigh. Accelerometer data from each body position and combinations of positions were used to develop random forest models to assess activity category recognition accuracy and MET estimation. Results Model performance for both MET estimation and activity category recognition were strengthened with the use of additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03-0.09 MET increase in prediction error compared with wearing all 5 devices. Balanced accuracy showed similar trends with slight decreases in balanced accuracy for the detection of locomotion (balanced accuracy decrease range 0-0.01), sedentary (balanced accuracy decrease range 0.05-0.13), and lifestyle activities (balanced accuracy decrease range 0.04-0.08) compared with all 5 placements. The accuracy of recognizing activity categories increased with additional placements (accuracy decrease range 0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition. Conclusions Additional accelerometer devices slightly enhance activity recognition accuracy and MET estimation in older adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear to be sufficient for estimating energy expenditure and activity category recognition in older adults.  more » « less
Award ID(s):
1750192
PAR ID:
10314821
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
JMIR mHealth and uHealth
Volume:
9
Issue:
5
ISSN:
2291-5222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Little is known about how sedentary behavior (SB) metrics derived from hip- and thigh-worn accelerometers agree for older adults. Thigh-worn activPAL (AP) micro monitors were concurrently worn with hip-worn ActiGraph (AG) GT3X+ accelerometers (with SB measured using the 100 counts per minute [cpm] cut point; AG 100cpm ) by 953 older adults (age 77 ± 6.6, 54% women) for 4–7 days. Device agreement for sedentary time and five SB pattern metrics was assessed using mean error and correlations. Logistic regression tested associations with four health outcomes using standardized (i.e.,  z scores) and unstandardized SB metrics. Mean errors (AP − AG 100cpm ) and 95% limits of agreement were: sedentary time −54.7 [−223.4, 113.9] min/day; time in 30+ min bouts 77.6 [−74.8, 230.1] min/day; mean bout duration 5.9 [0.5, 11.4] min; usual bout duration 15.2 [0.4, 30] min; breaks in sedentary time −35.4 [−63.1, −7.6] breaks/day; and alpha −.5 [−.6, −.4]. Respective Pearson correlations were: .66, .78, .73, .79, .51, and .40. Concordance correlations were: .57, .67, .40, .50, .14, and .02. The statistical significance and direction of associations were identical for AG 100cpm and AP metrics in 46 of 48 tests, though significant differences in the magnitude of odds ratios were observed among 13 of 24 tests for unstandardized and five of 24 for standardized SB metrics. Caution is needed when interpreting SB metrics and associations with health from AG 100cpm due to the tendency for it to overestimate breaks in sedentary time relative to AP. However, high correlations between AP and AG 100cpm measures and similar standardized associations with health outcomes suggest that studies using AG 100cpm are useful, though not ideal, for studying SB in older adults. 
    more » « less
  2. Background : Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods : Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results : Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m 2 . Conclusions : Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting. 
    more » « less
  3. Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using hip-worn accelerometer data from a wide age range of older adults. Methods: Deep learning models were trained with 30-Hz triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged 35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in model training. Results: Mean errors (activPAL − CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0, 42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration −1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%). Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass index groups with the largest deviations observed for those with body mass index ≥30 kg/m2. Conclusions: Overall, these strong validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to extend understanding of the epidemiology and health consequences of sitting. 
    more » « less
  4. Self-tracking using commodity wearables such as smartwatches can help older adults reduce sedentary behaviors and engage in physical activity. However, activity recognition applications that are typically deployed in these wearables tend to be trained on datasets that best represent younger adults. We explore how our activity recognition model, a hybrid of long short-term memory and convolutional layers, pre-trained on smartwatch data from younger adults, performs on older adult data. We report results on week-long data from two older adults collected in a preliminary study in the wild with ground-truth annotations based on activPAL, a thigh-worn sensor. We find that activity recognition for older adults remains challenging even when comparing our model’s performance to state of the art deployed models such as the Google Activity Recognition API. More so, we show that models trained on younger adults tend to perform worse on older adults. 
    more » « less
  5. Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies. 
    more » « less