skip to main content


Title: Effects of Total Ionizing Dose on SRAM Physical Unclonable Functions
The effects of total ionizing dose (TID) on SRAM physical unclonable functions (PUF) are studied through x-ray and proton irradiation of commercially available SRAM. Negative shifts in the Fractional Hamming Weight (FHW) were measured with increasing TID, indicating a migration of bistable cells towards logic low. Additionally, positive shifts in the intra-die Fractional Hamming Distance (FHD) were measured and indicate changes to the virtual fingerprint of an SRAM PUF with TID, especially in devices that were dosed while holding data. Shifts in inter-die FHD were negligible, allowing individual SRAMs still to be easily identified based on the FHD between a known and unknown sample even after moderate amounts of TID. In some cases, SRAMs could still be identified by their PUFs after the devices had failed. In all cases, the irradiated SRAM devices retain their virtual fingerprint after recovery through annealing.  more » « less
Award ID(s):
1757777
PAR ID:
10316518
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Nuclear Science
ISSN:
0018-9499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The edge devices connected to the Internet of Things (IoT) infrastructures are increasingly susceptible to piracy. These pirated edge devices pose a serious threat to security, as an adversary can get access to the private network through these non-authentic devices. It is necessary to authenticate an edge device over an unsecured channel to safeguard the network from being infiltrated through these fake devices. The implementation of security features demands extensive computational power and a large hardware/software overhead, both of which are difficult to satisfy because of inherent resource limitation in the IoT edge devices. This paper presents a low-cost authentication protocol for IoT edge devices that exploits power-up states of built-in SRAM for device fingerprint generations. Unclonable ID generated from the on-chip SRAM could be unreliable, and to circumvent this issue, we propose a novel ID matching scheme that alleviates the need for enhancing the reliability of the IDs generated from on-chip SRAMs. Security and different attack analysis show that the probability of impersonating an edge device by an adversary is insignificant. The protocol is implemented using a commercial microcontroller, which requires a small code overhead. However, no modification of device hardware is necessary. 
    more » « less
  2. A subthreshold hybrid PUF-embedded authentication circuit is proposed to mitigate the financial incentives that drive the counterfeit community and to encourage the COTS manufacturers to use authentication for system identification in their parts. The proposed hybrid PUF with cross-coupled inverters and a delay-based PUF strategy has sufficient entropy for authentication and a reduced number of transistors per bit. The area efficient fingerprint circuit does not require additional die area, pins, or power overhead. The performance of the primary circuit is unaffected by the fingerprint circuit. The hybrid circuit designed in a 65 nm CMOS process is discussed. 
    more » « less
  3. The rapid adoption of Internet-of-Medical-Things (IoMT) has revolutionized e-health systems, particularly in remote patient monitoring. With the growing adoption of Internet-of-Medical-Things (IoMT) in delivering technologically advanced health services, the security of Medtronic devices is pivotal as the security and privacy of data from these devices are directly related to patient safety. PUF has been the most widely adopted hardware security primitive which has been successfully integrated with various Internet-of-Things (IoT) based applications, particularly in smart healthcare for facilitating device security. To facilitate security and access control to IoMT devices, this work proposes a novel cybersecurity solution using PUF for facilitating global access to IoMT devices. The proposed framework presents an approach that enables the patient’s body area network devices supported by PUF to be securely accessible and controllable globally. The proposed cybersecurity solution has been experimentally validated using state-of-the-art SRAM PUF, a delay based PUF, and a trusted platform module (TPM) primitive. 
    more » « less
  4. Advanced FinFET SRAMs undergo reliability degradation due to various front-end and back-end wearout mechanisms. The design of reliable SRAMs benefits from accurate wearout models that are calibrated by accelerated test. With respect to testing, the accelerated conditions which can help separate the dominant wearout mechanisms related to circuit failure is crucial for model calibration and reliability prediction. In this paper, the estimation of optimal accelerated test regions for a 14nm FinFET SRAM under various wearout mechanisms is presented. The dominant regions for specific mechanisms are compared and analyzed for effective testing. It is observed that for our SRAM example circuit only bias temperature instability (BTI) and middle-of-line time-dependent dielectric breakdown (MTDDB) have test regions where their failures can be isolated, while the other mechanisms can’t be extracted individually due to acceptable regions’ overlap. Meanwhile, the SRAM cell activity distribution has a small influence on test regions and selectivity. 
    more » « less
  5. A simple PUF-based authentication circuit is proposed that will lower the entry barrier for counterfeit countermeasures by COTs manufacturers of integrated circuits. The on-chip fingerprint circuit does not require additional die area, I/O pins, or a separate read-out circuit. This approach to assuring integrity in the semiconductor supply chain will result in negative financial incentives for counterfeiters. An 80 bit authentication circuit which includes a 16 bit frame header has been designed in a UMC 65nm process with an area estimate of 0.01 mm2. 
    more » « less