skip to main content


Title: Who is the Expert? Reconciling Algorithm Aversion and Algorithm Appreciation in AI-Supported Decision Making
The increased use of algorithms to support decision making raises questions about whether people prefer algorithmic or human input when making decisions. Two streams of research on algorithm aversion and algorithm appreciation have yielded contradicting results. Our work attempts to reconcile these contradictory findings by focusing on the framings of humans and algorithms as a mechanism. In three decision making experiments, we created an algorithm appreciation result (Experiment 1) as well as an algorithm aversion result (Experiment 2) by manipulating only the description of the human agent and the algorithmic agent, and we demonstrated how different choices of framings can lead to inconsistent outcomes in previous studies (Experiment 3). We also showed that these results were mediated by the agent's perceived competence, i.e., expert power. The results provide insights into the divergence of the algorithm aversion and algorithm appreciation literature. We hope to shift the attention from these two contradicting phenomena to how we can better design the framing of algorithms. We also call the attention of the community to the theory of power sources, as it is a systemic framework that can open up new possibilities for designing algorithmic decision support systems.  more » « less
Award ID(s):
1563705 1421929
NSF-PAR ID:
10318059
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
5
Issue:
cscw2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human-AI collaboration is an increasingly commonplace part of decision-making in real world applications. However, how humans behave when collaborating with AI is not well understood. We develop metacognitive bandits, a computational model of a human's advice-seeking behavior when working with an AI. The model describes a person's metacognitive process of deciding when to rely on their own judgment and when to solicit the advice of the AI. It also accounts for the difficulty of each trial in making the decision to solicit advice. We illustrate that the metacognitive bandit makes decisions similar to humans in a behavioral experiment. We also demonstrate that algorithm aversion, a widely reported bias, can be explained as the result of a quasi-optimal sequential decision-making process. Our model does not need to assume any prior biases towards AI to produce this behavior. 
    more » « less
  2. Algorithmic decision-making systems are increasingly used throughout the public and private sectors to make important decisions or assist humans in making these decisions with real social consequences. While there has been substantial research in recent years to build fair decision-making algorithms, there has been less research seeking to understand the factors that affect people's perceptions of fairness in these systems, which we argue is also important for their broader acceptance. In this research, we conduct an online experiment to better understand perceptions of fairness, focusing on three sets of factors: algorithm outcomes, algorithm development and deployment procedures, and individual differences. We find that people rate the algorithm as more fair when the algorithm predicts in their favor, even surpassing the negative effects of describing algorithms that are very biased against particular demographic groups. We find that this effect is moderated by several variables, including participants' education level, gender, and several aspects of the development procedure. Our findings suggest that systems that evaluate algorithmic fairness through users' feedback must consider the possibility of "outcome favorability" bias. 
    more » « less
  3. Ensuring effective public understanding of algorithmic decisions that are powered by machine learning techniques has become an urgent task with the increasing deployment of AI systems into our society. In this work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to support non-experts in understanding the performance of machine learning models. Through interviews (n=7) and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a series of alternative representations target each of those challenges in the context of an algorithm for making recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time, and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we significantly improve users’ understanding and (2) flow charts, which help point out the direction of reading the data, were most useful in improving objective understanding. Our findings set the stage for developing more intuitive and generally understandable representations of the performance of machine learning models 
    more » « less
  4. Population protocols are a popular model of distributed computing, in which randomly-interacting agents with little computational power cooperate to jointly perform computational tasks. Inspired by developments in molecular computation, and in particular DNA computing, recent algorithmic work has focused on the complexity of solving simple yet fundamental tasks in the population model, such as leader election (which requires convergence to a single agent in a special “leader” state), and majority (in which agents must converge to a decision as to which of two possible initial states had higher initial count). Known results point towards an inherent trade-off between the time complexity of such algorithms, and the space complexity, i.e. size of the memory available to each agent. In this paper, we explore this trade-off and provide new upper and lower bounds for majority and leader election. First, we prove a unified lower bound, which relates the space available per node with the time complexity achievable by a protocol: for instance, our result implies that any protocol solving either of these tasks for n agents using O(log log n) states must take Ω(n/polylogn) expected time. This is the first result to characterize time complexity for protocols which employ super-constant number of states per node, and proves that fast, poly-logarithmic running times require protocols to have relatively large space costs. On the positive side, we give algorithms showing that fast, poly-logarithmic convergence time can be achieved using O (log2 n) space per node, in the case of both tasks. Overall, our results highlight a time complexity separation between O (log log n) and Θ(log2 n) state space size for both majority and leader election in population protocols, and introduce new techniques, which should be applicable more broadly. 
    more » « less
  5. Many researchers and policymakers have expressed excitement about algorithmic explanations enabling more fair and responsible decision-making. However, recent experimental studies have found that explanations do not always improve human use of algorithmic advice. In this study, we shed light on how people interpret and respond to counterfactual explanations (CFEs)---explanations that show how a model's output would change with marginal changes to its input(s)---in the context of pretrial risk assessment instruments (PRAIs). We ran think-aloud trials with eight sitting U.S. state court judges, providing them with recommendations from a PRAI that includes CFEs. We found that the CFEs did not alter the judges' decisions. At first, judges misinterpreted the counterfactuals as real---rather than hypothetical---changes to defendants. Once judges understood what the counterfactuals meant, they ignored them, stating their role is only to make decisions regarding the actual defendant in question. The judges also expressed a mix of reasons for ignoring or following the advice of the PRAI without CFEs. These results add to the literature detailing the unexpected ways in which people respond to algorithms and explanations.They also highlight new challenges associated with improving human-algorithm collaborations through explanations. 
    more » « less