skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards multi-agent autonomous racing with the Deepracing framework.
Multi-agent autonomous racing is a challenging problem for autonomous vehicles due to the split-second, and complex decisions that vehicles must continuously make during a race. The presence of other agents on the track requires continuous monitoring of the ego vehicle’s surroundings, and necessitates predicting the behavior of other vehicles so the ego can quickly react to a changing environment with informed decisions. In our previous work we have developed the DeepRacing AI framework for autonomous formula one racing. Our DeepRacing framework was the first implementation to use the highly photorealisitc Formula One game as a simulation testbed for autonomous racing. We have successfully demonstrated single agent high speed autonomous racing using Bezier curve trajectories. In this paper, we extend the capabilities of the DeepRacing framework towards multi-agent autonomous racing. To do so, we first develop and learn a virtual camera model from game data that the user can configure to emulate the presence of a camera sensor on the vehicle. Next we propose and train a deep recurrent neural network that can predict the future poses of opponent agents in the field of view of the virtual camera using vehicles position, velocity, and heading data with respect to the ego vehicle racecar. We demonstrate early promising results for both these contributions in the game. These added features will extend the DeepRacing framework to become more suitable for multi-agent autonomous racing algorithm development  more » « less
Award ID(s):
2046582
PAR ID:
10320142
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Robotics and Automation (ICRA) - Workshop on Opportunities and Challenges with Autonomous Racing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the ever-evolving landscape of autonomous vehicles, competition and research of high-speed autonomous racing emerged as a captivating frontier, pushing the limits of perception, planning, and control. Autonomous racing presents a setup where the intersection of cutting-edge software and hardware development sparks unprecedented opportunities and confronts unique challenges. The motorsport axiom, “If everything seems under control, then you are not going fast enough,” resonates in this special issue, underscoring the demand for algorithms and hardware that can navigate at the cutting edge of control, traction, and agility. In pursuing autonomy at high speeds, the racing environment becomes a crucible, pushing autonomous vehicles to execute split-second decisions with high precision. Autonomous racing, we believe, offers a litmus test for the true capabilities of self-driving software. Just as racing has historically served as a proving ground for automotive technology, autonomous racing now presents itself as the crucible for testing self-driving algorithms. While routine driving situations dominate much of the autonomous vehicle operations, focusing on extreme situations and environments is crucial to support investigation into safety benefits. The urgency of advancing highspeed autonomy is palpable in burgeoning autonomous racing competitions like Formula Student Driverless, F1TENTH autonomous racing, Roborace, and the Indy Autonomous Challenge. These arenas provide a literal testbed for testing perception, planning, and control algorithms and symbolize the accelerating traction of autonomous racing as a proving ground for agile and safe autonomy. Our special issue focuses on cutting-edge research into software and hardware solutions for highspeed autonomous racing. We sought contributions from the robotics and autonomy communities that delve into the intricacies of head-to-head multi-agent racing: modeling vehicle dynamics at high speeds, developing advanced perception, planning, and control algorithms, as well as the demonstration of algorithms, in simulation and in real-world vehicles. While presenting recent developments for autonomous racing, we believe these special issue papers will also create an impact in the broader realm of autonomous vehicles. 
    more » « less
  2. Self-driving autonomous vehicles (AVs) have recently gained popularity as a research topic. The safety of AVs is exceptionally important as failure in the design of an AV could lead to catastrophic consequences. AV systems are highly heterogeneous with many different and complex components, so it is difficult to perform end-to-end testing. One solution to this dilemma is to evaluate AVs using simulated racing competition. In this thesis, we present a simulated autonomous racing competition, Generalized RAcing Intelligence Competition (GRAIC). To compete in GRAIC, participants need to submit their controller files which are deployed on a racing ego-vehicle on different race tracks. To evaluate the submitted controller, we also developed a testing pipeline, Autonomous System Operations (AutOps). AutOps is an automated, scalable, and fair testing pipeline developed using software engineering techniques such as continuous integration, containerization, and serverless computing. In order to evaluate the submitted controller in non-trivial circumstances, we populate the race tracks with scenarios, which are pre-defined traffic situations commonly seen in the real road. We present a dynamic scenario testing strategy that generates new scenarios based on results of the ego-vehicle passing through previous scenarios. 
    more » « less
  3. null (Ed.)
    Balancing performance and safety is crucial to deploying autonomous vehicles in multi-agent environments. In particular, autonomous racing is a domain that penalizes safe but conservative policies, highlighting the need for robust, adaptive strategies. Current approaches either make simplifying assumptions about other agents or lack robust mechanisms for online adaptation. This work makes algorithmic contributions to both challenges. First, to generate a realistic, diverse set of opponents, we develop a novel method for self-play based on replica-exchange Markov chain Monte Carlo. Second, we propose a distributionally robust bandit optimization procedure that adaptively adjusts risk aversion relative to uncertainty in beliefs about opponents’ behaviors. We rigorously quantify the tradeoffs in performance and robustness when approximating these computations in real-time motion-planning, and we demonstrate our methods experimentally on autonomous vehicles that achieve scaled speeds comparable to Formula One racecars. 
    more » « less
  4. With the development of sensing and communica- tion technologies in networked cyber-physical systems (CPSs), multi-agent reinforcement learning (MARL)-based methodolo- gies are integrated into the control process of physical systems and demonstrate prominent performance in a wide array of CPS domains, such as connected autonomous vehicles (CAVs). However, it remains challenging to mathematically characterize the improvement of the performance of CAVs with commu- nication and cooperation capability. When each individual autonomous vehicle is originally self-interest, we can not assume that all agents would cooperate naturally during the training process. In this work, we propose to reallocate the system’s total reward efficiently to motivate stable cooperation among autonomous vehicles. We formally define and quantify how to reallocate the system’s total reward to each agent under the proposed transferable utility game, such that communication- based cooperation among multi-agents increases the system’s total reward. We prove that Shapley value-based reward reallocation of MARL locates in the core if the transferable utility game is a convex game. Hence, the cooperation is stable and efficient and the agents should stay in the coalition or the cooperating group. We then propose a cooperative policy learning algorithm with Shapley value reward reallocation. In experiments, compared with several literature algorithms, we show the improvement of the mean episode system reward of CAV systems using our proposed algorithm. 
    more » « less
  5. Abstract Connected autonomous intelligent agents (AIA) can improve intersection performance and resilience for the transportation infrastructure. An agent is an autonomous decision maker whose decision making is determined internally but may be altered by interactions with the environment or with other agents. Implementing agent-based modeling techniques to advance communication for more appropriate decision making can benefit autonomous vehicle technology. This research examines vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and infrastructure to infrastructure (I2I) communication strategies that use gathered data to ensure these agents make appropriate decisions under operational circumstances. These vehicles and signals are modeled to adapt to the common traffic flow of the intersection to ultimately find an traffic flow that will minimizes average vehicle transit time to improve intersection efficiency. By considering each light and vehicle as an agent and providing for communication between agents, additional decision-making data can be transmitted. Improving agent based I2I communication and decision making will provide performance benefits to traffic flow capacities. 
    more » « less