Title: Privately Estimating Graph Parameters in Sublinear Time
We initiate a systematic study of algorithms that are both differentially-private and run in sublinear time for several problems in which the goal is to estimate natural graph parameters. Our main result is a differentially-private $$(1+\rho)$$-approximation algorithm for the problem of computing the average degree of a graph, for every $$\rho>0$$. The running time of the algorithm is roughly the same (for sparse graphs) as its non-private version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the first differentially-private sublinear-time approximation algorithms for the maximum matching size and the minimum vertex cover size of a graph. An overarching technique we employ is the notion of \emph{coupled global sensitivity} of randomized algorithms. Related variants of this notion of sensitivity have been used in the literature in ad-hoc ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation algorithms. more »« less
Blocki, Jeremiah; Fichtenberger, Hendrik; Grigorescu, Elena; Mukherjee, Tamalika
(, Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Meka, Raghu
(Ed.)
Differential privacy and sublinear algorithms are both rapidly emerging algorithmic themes in times of big data analysis. Although recent works have shown the existence of differentially private sublinear algorithms for many problems including graph parameter estimation and clustering, little is known regarding hardness results on these algorithms. In this paper, we initiate the study of lower bounds for problems that aim for both differentially-private and sublinear-time algorithms. Our main result is the incompatibility of both the desiderata in the general case. In particular, we prove that a simple problem based on one-way marginals yields both a differentially-private algorithm, as well as a sublinear-time algorithm, but does not admit a "strictly" sublinear-time algorithm that is also differentially private.
Bhattacharya, Sayan; Kiss, Peter; Saranurak, Thatchaphol; Wajc, David
(, Journal of the ACM)
We present dynamic algorithms withpolylogarithmicupdate time for estimating the size of the maximum matching of a graph undergoing edge insertions and deletions with approximation ratiostrictly better than 2. Specifically, we obtain a\(1+\frac{1}{\sqrt {2}}+\epsilon \approx 1.707+\epsilon \)approximation in bipartite graphs and a 1.973 + ϵ approximation in general graphs. We thus answer in the affirmative the value version of the major open question repeatedly asked in the dynamic graph algorithms literature. Our randomized algorithms’ approximation and worst-case update time bounds both hold w.h.p. against adaptive adversaries. Our algorithms are based on simulating new two-pass streaming matching algorithms in the dynamic setting. Our key new idea is to invoke the recent sublinear-time matching algorithm of Behnezhad (FOCS’21) in a white-box manner to efficiently simulate the second pass of our streaming algorithms, while bypassing the well-known vertex-update barrier.
Chen, Yu; Kannan, Sampath; Khanna, Sanjeev
(, Leibniz international proceedings in informatics)
We consider the problem of designing sublinear time algorithms for estimating the cost of minimum] metric traveling salesman (TSP) tour. Specifically, given access to a n × n distance matrix D that specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any epsilon > 0, there exists an O^~(n/epsilon^O(1))-time algorithm that returns a (1+epsilon)-approximate estimate of the MST cost. This result immediately implies an O^~(n/epsilon^O(1)) time algorithm to estimate the TSP cost to within a (2 + epsilon) factor for any epsilon > 0. However, no o(n^2)-time algorithms are known to approximate metric TSP to a factor that is strictly better than 2. On the other hand, there were also no known barriers that rule out existence of (1 + epsilon)-approximate estimation algorithms for metric TSP with O^~ (n) time for any fixed epsilon > 0. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. On the algorithmic side, we first consider the graphic TSP problem where the metric D corresponds to shortest path distances in a connected unweighted undirected graph. We show that there exists an O^~(n) time algorithm that estimates the cost of graphic TSP to within a factor of (2 − epsilon_0) for some epsilon_0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that achieves an approximation factor less than 2. We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an O^~(n ^ 1.5) time algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic TSP as well as for (1, 2)-TSP naturally lend themselves to O^~(n) space streaming algorithms that give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results motivate the natural question if analogously to metric MST, for any epsilon > 0, (1 + epsilon)-approximate estimates can be obtained for graphic TSP and (1, 2)-TSP using O^~ (n) queries. We answer this question in the negative – there exists an epsilon_0 > 0, such that any algorithm that estimates the cost of graphic TSP ((1, 2)-TSP) to within a (1 + epsilon_0)-factor, necessarily requires (n^2) queries. This lower bound result highlights a sharp separation between the metric MST and metric TSP problems. Similarly to many classical approximation algorithms for TSP, our sublinear time estimation algorithms utilize subroutines for estimating the size of a maximum matching in the underlying graph. We show that this is not merely an artifact of our approach, and that for any epsilon > 0, any algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + epsilon)-factor, can also be used to estimate the size of a maximum matching in a bipartite graph to within an epsilon n additive error. This connection allows us to translate known lower bounds for matching size estimation in various models to similar lower bounds for metric TSP cost estimation.
We consider the problem of estimating the spectral density of the normalized adjacency matrix of an $$n$$-node undirected graph. We provide a randomized algorithm that, with $$O(n\epsilon^{-2})$$ queries to a degree and neighbor oracle and in $$O(n\epsilon^{-3})$$ time, estimates the spectrum up to $$\epsilon$$ accuracy in the Wasserstein-1 metric. This improves on previous state-of-the-art methods, including an $$O(n\epsilon^{-7})$$ time algorithm from [Braverman et al., STOC 2022] and, for sufficiently small $$\epsilon$$, a $$2^{O(\epsilon^{-1})}$$ time method from [Cohen-Steiner et al., KDD 2018]. To achieve this result, we introduce a new notion of graph sparsification, which we call \emph{nuclear sparsification}. We provide an $$O(n\epsilon^{-2})$$-query and $$O(n\epsilon^{-2})$$-time algorithm for computing $$O(n\epsilon^{-2})$$-sparse nuclear sparsifiers. We show that this bound is optimal in both its sparsity and query complexity, and we separate our results from the related notion of additive spectral sparsification. Of independent interest, we show that our sparsification method also yields the first \emph{deterministic} algorithm for spectral density estimation that scales linearly with $$n$$ (sublinear in the representation size of the graph).
Chekuri, Chandra; Christiansen, Aleksander Bjørn; Holm, Jacob; van der Hoog, Ivor; Quanrud, Kent; Rotenberg, Eva; Schwiegelshohn, Chris.
(, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024)
Woodruff, David P.
(Ed.)
We give improved algorithms for maintaining edge-orientations of a fully-dynamic graph, such that the maximum out-degree is bounded. On one hand, we show how to orient the edges such that maximum out-degree is proportional to the arboricity $$\alpha$$ of the graph, in, either, an amortised update time of $$O(\log^2 n \log \alpha)$$, or a worst-case update time of $$O(\log^3 n \log \alpha)$$. On the other hand, motivated by applications including dynamic maximal matching, we obtain a different trade-off. Namely, the improved update time of either $$O(\log n \log \alpha)$$, amortised, or $$O(\log ^2 n \log \alpha)$$, worst-case, for the problem of maintaining an edge-orientation with at most $$O(\alpha + \log n)$$ out-edges per vertex. Finally, all of our algorithms naturally limit the recourse to be polylogarithmic in $$n$$ and $$\alpha$$. Our algorithms adapt to the current arboricity of the graph, and yield improvements over previous work: Firstly, we obtain deterministic algorithms for maintaining a $$(1+\varepsilon)$$ approximation of the maximum subgraph density, $$\rho$$, of the dynamic graph. Our algorithms have update times of $$O(\varepsilon^{-6}\log^3 n \log \rho)$$ worst-case, and $$O(\varepsilon^{-4}\log^2 n \log \rho)$$ amortised, respectively. We may output a subgraph $$H$$ of the input graph where its density is a $$(1+\varepsilon)$$ approximation of the maximum subgraph density in time linear in the size of the subgraph. These algorithms have improved update time compared to the $$O(\varepsilon^{-6}\log ^4 n)$$ algorithm by Sawlani and Wang from STOC 2020. Secondly, we obtain an $$O(\varepsilon^{-6}\log^3 n \log \alpha)$$ worst-case update time algorithm for maintaining a $$(1~+~\varepsilon)\textnormal{OPT} + 2$$ approximation of the optimal out-orientation of a graph with adaptive arboricity $$\alpha$$, improving the $$O(\varepsilon^{-6}\alpha^2 \log^3 n)$$ algorithm by Christiansen and Rotenberg from ICALP 2022. This yields the first worst-case polylogarithmic dynamic algorithm for decomposing into $$O(\alpha)$$ forests. Thirdly, we obtain arboricity-adaptive fully-dynamic deterministic algorithms for a variety of problems including maximal matching, $$\Delta+1$$ colouring, and matrix vector multiplication. All update times are worst-case $$O(\alpha+\log^2n \log \alpha)$$, where $$\alpha$$ is the current arboricity of the graph. For the maximal matching problem, the state-of-the-art deterministic algorithms by Kopelowitz, Krauthgamer, Porat, and Solomon from ICALP 2014 runs in time $$O(\alpha^2 + \log^2 n)$$, and by Neiman and Solomon from STOC 2013 runs in time $$O(\sqrt{m})$$. We give improved running times whenever the arboricity $$\alpha \in \omega( \log n\sqrt{\log\log n})$$.
Blocki, J, Grigorescu, E, and Mukherjee, T. Privately Estimating Graph Parameters in Sublinear Time. Retrieved from https://par.nsf.gov/biblio/10322751. 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). . Web. doi:10.4230/LIPIcs.ICALP.2022.82.
Blocki, J, Grigorescu, E, & Mukherjee, T. Privately Estimating Graph Parameters in Sublinear Time. 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)., (). Retrieved from https://par.nsf.gov/biblio/10322751. https://doi.org/10.4230/LIPIcs.ICALP.2022.82
@article{osti_10322751,
place = {Country unknown/Code not available},
title = {Privately Estimating Graph Parameters in Sublinear Time},
url = {https://par.nsf.gov/biblio/10322751},
DOI = {10.4230/LIPIcs.ICALP.2022.82},
abstractNote = {We initiate a systematic study of algorithms that are both differentially-private and run in sublinear time for several problems in which the goal is to estimate natural graph parameters. Our main result is a differentially-private $(1+\rho)$-approximation algorithm for the problem of computing the average degree of a graph, for every $\rho>0$. The running time of the algorithm is roughly the same (for sparse graphs) as its non-private version proposed by Goldreich and Ron (Sublinear Algorithms, 2005). We also obtain the first differentially-private sublinear-time approximation algorithms for the maximum matching size and the minimum vertex cover size of a graph. An overarching technique we employ is the notion of \emph{coupled global sensitivity} of randomized algorithms. Related variants of this notion of sensitivity have been used in the literature in ad-hoc ways. Here we formalize the notion and develop it as a unifying framework for privacy analysis of randomized approximation algorithms.},
journal = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).},
author = {Blocki, J and Grigorescu, E and Mukherjee, T.},
editor = {Mikołaj Boja´nczyk, Emanuela Merelli}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.