Beta gallium oxide (β-Ga2O3) shows significant promise in high-temperature, high-power, and sensing electronics applications. However, long-term stable metallization layers for Ohmic contacts at high temperatures present unique thermodynamic challenges. The current most common Ohmic contact design based on 20 nm of Ti has been repeatedly demonstrated to fail at even moderately elevated temperatures (300–400 °C) due to a combination of nonstoichiometric Ti/Ga2O3 interfacial reactions and kinetically favored Ti diffusion processes. Here, we demonstrate stable Ohmic contacts for Ga2O3 devices operating up to 500–600 °C using ultrathin Ti layers with a self-limiting interfacial reaction. The ultrathin Ti layer in the 5 nm Ti/100 nm Au contact stack is designed to fully oxidize while forming an Ohmic contact, thereby limiting both thermodynamic and kinetic instability. This novel contact design strategy results in an epitaxial conductive anatase titanium oxide interface layer that enables low-resistance Ohmic contacts that are stable both under long-term continuous operation (>500 h) at 600 °C in vacuum (≤10−4 Torr), as well as after repeated thermal cycling (15 times) between room temperature and 550 °C in flowing N2. This stable Ohmic contact design will accelerate the development of high-temperature devices by enabling research focus to shift toward rectifying interfaces and other interfacial layers.
more »
« less
Tunable metal contacts at layered black-arsenic/metal interface forming during metal deposition for device fabrication
Abstract Understanding the kinetics of interfacial reaction in the deposition of metal contacts on 2D materials is important for determining the level of contact tenability and the nature of the contact itself. Here, we find that some metals, when deposited onto layered black-arsenic films using e-beam evaporation, form a-few-nm thick distinct intermetallic layer and significantly change the nature of the metal contact. In the case of nickel, the intermetallic layer is Ni 11 As 8 , whereas in the cases of chromium and titanium they are CrAs and a-Ti 3 As, respectively, with their unique structural and electronic properties. We also find that temperature, which affects interatomic diffusion and interfacial reaction kinetics, can be used to control the thickness and crystallinity of the interfacial layer. In the field effect transistors with black-arsenic channel, due to the specifics of its formation, this interfacial layer introduces a second and more efficient edge-type charge transfer pathway from the metal into the black-arsenic. Such tunable interfacial metal contacts could provide new pathways for engineering highly efficient devices and device architectures.
more »
« less
- PAR ID:
- 10323956
- Date Published:
- Journal Name:
- Communications Materials
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2662-4443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Contact engineering on monolayer layer (ML) semiconducting transition metal dichalcogenides (TMDs) is considered the most challenging problem towards using these materials as a transistor channel in future advanced technology nodes. The typically observed strong Femi level pinning induced in part by the reaction of the source/drain contact metal and the ML TMD frequently results in a large Schottky barrier height, which limits the electrical performance of ML TMD field-effect transistors (FETs). However, at a microscopic level, little is known about how interface defects or reaction sites impact the electrical performance of ML TMD FETs. In this work, we have performed statistically meaningful electrical measurements on at least 120 FETs combined with careful surface analysis to unveil contact resistance dependencies on the interface chemistry. In particular, we achieved a low contact resistance for ML MoS2 FETs with ultra-high vacuum (UHV, 3×10-11 mbar) deposited Ni contacts, ~500 ohm·μm, which is 5 times lower than the contact resistance achieved when deposited at high vacuum (HV, 3×10-6 mbar) conditions. These electrical results strongly correlate with our surface analysis observations. X-ray photoelectron spectroscopy (XPS) revealed significant bonding species between Ni and MoS2 under UHV conditions compared to HV. We also studied the Bi/MoS2 interface under UHV and HV deposition conditions. Different from the case of Ni, we do not observe a difference in contact resistance or interface chemistry between contacts deposited under UHV and HV. Finally, this article also explores the thermal stability and reliability of the two contact metals employed here.more » « less
-
Access to well-defined, model-like, non-noble metal intermetallic compound nanomaterials (<10 nm) with phase pure bulk, bulk-like 1st-atomic-layer surface composition, and unique electronic and surface chemical properties is critical for the fields of catalysis, electronics, and sensor development. Non-noble metal intermetallic compounds are compositionally ordered solid compounds composed of transition metals and semimetals or post-transition metals. Their synthesis as model-like high-surface-area supported nanoparticles is challenging due to the elevated reactivity of the constituent elements and their interaction with the support material. In this study, we have developed a systematic understanding of the fundamental phenomena that control the synthesis of these materials such that phase pure bulk nanoparticles (<10 nm) may be produced with bulk-like surface terminations. The effects of the precursor and support choice, chemical potential of H 2 , reduction temperature, and annealing procedures were investigated to understand the fundamental kinetics of particle formation and interactions that dictate phase purity and stability and 1st-atomic-layer surface composition. The understanding developed may serve as a foundation for further developing advanced synthesis procedures for well-defined nanoparticles with increasing compositional complexity.more » « less
-
Abstract The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interactions of electrode/electrolyte interfaces result in nonuniform stress fields and structurally different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo–mechanical coupling and failure mechanisms at solid–liquid interfaces and solid–solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid–solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Finally, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries.more » « less
-
Abstract Supported nanoparticles are broadly employed in industrial catalytic processes, where the active sites can be tuned by metal-support interactions (MSIs). Although it is well accepted that supports can modify the chemistry of metal nanoparticles, systematic utilization of MSIs for achieving desired catalytic performance is still challenging. The developments of supports with appropriate chemical properties and identification of the resulting active sites are the main barriers. Here, we develop two-dimensional transition metal carbides (MXenes) supported platinum as efficient catalysts for light alkane dehydrogenations. Ordered Pt 3 Ti and surface Pt 3 Nb intermetallic compound nanoparticles are formed via reactive metal-support interactions on Pt/Ti 3 C 2 T x and Pt/Nb 2 CT x catalysts, respectively. MXene supports modulate the nature of the active sites, making them highly selective toward C–H activation. Such exploitation of the MSIs makes MXenes promising platforms with versatile chemical reactivity and tunability for facile design of supported intermetallic nanoparticles over a wide range of compositions and structures.more » « less
An official website of the United States government

