skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrathin stable Ohmic contacts for high-temperature operation of β -Ga2O3 devices
Beta gallium oxide (β-Ga2O3) shows significant promise in high-temperature, high-power, and sensing electronics applications. However, long-term stable metallization layers for Ohmic contacts at high temperatures present unique thermodynamic challenges. The current most common Ohmic contact design based on 20 nm of Ti has been repeatedly demonstrated to fail at even moderately elevated temperatures (300–400 °C) due to a combination of nonstoichiometric Ti/Ga2O3 interfacial reactions and kinetically favored Ti diffusion processes. Here, we demonstrate stable Ohmic contacts for Ga2O3 devices operating up to 500–600 °C using ultrathin Ti layers with a self-limiting interfacial reaction. The ultrathin Ti layer in the 5 nm Ti/100 nm Au contact stack is designed to fully oxidize while forming an Ohmic contact, thereby limiting both thermodynamic and kinetic instability. This novel contact design strategy results in an epitaxial conductive anatase titanium oxide interface layer that enables low-resistance Ohmic contacts that are stable both under long-term continuous operation (>500 h) at 600 °C in vacuum (≤10−4 Torr), as well as after repeated thermal cycling (15 times) between room temperature and 550 °C in flowing N2. This stable Ohmic contact design will accelerate the development of high-temperature devices by enabling research focus to shift toward rectifying interfaces and other interfacial layers.  more » « less
Award ID(s):
2125899
PAR ID:
10584123
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
4
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices. 
    more » « less
  2. The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C. 
    more » « less
  3. Low resistance non-alloyed ohmic contacts are realized by a metal-first process on homoepitaxial, heavily n+ doped (010) β-Ga2O3. The resulting contacts have a contact resistance (Rc) as low as 0.23 Ω-mm on an as-grown sample and exhibit nearly linear ohmic behavior even without a post-metallization anneal. The metal-first process was applied to form non-alloyed contacts on n+ (010) β-Ga2O3 grown by metal-organic chemical vapor deposition (MOCVD) as well as suboxide molecular beam epitaxy. Identical contacts fabricated on similar MOCVD samples by conventional liftoff processing exhibit highly rectifying Schottky behavior. Re-processing using the metal-first process after removal of the poor contacts by conventional methods does not improve the contacts; however, addition of a Ga-flux polishing step followed by re-processing using a metal-first process again results in low resistance, nearly linear ohmic contacts. The liftoff process, therefore, does not reliably render nearly linear ohmic behavior in non-alloyed contacts. Furthermore, no interface contamination was detected by x-ray photoelectron spectroscopy. This suggests that during the initial liftoff processing, a detrimental layer may form at the interface, likely modification of the Ga2O3 surface, that is not removable during the contact removal process but that can be removed by Ga-flux polishing. 
    more » « less
  4. This work demonstrates the advantage of carrying out silicon ion (Si+) implantation at high temperatures for forming controlled heavily doped regions in gallium oxide. Room temperature (RT, 25 °C) and high temperature (HT, 600 °C) Si implants were carried out into MBE grown (010) β-Ga2O3 films to form ∼350 nm deep Si-doped layers with average concentrations up to ∼1.2 × 1020 cm−3. For such high concentrations, the RT sample was too resistive for measurement, but the HT samples had 82.1% Si dopant activation efficiency with a high sheet electron concentration of 3.3 × 1015 cm−2 and an excellent mobility of 92.8 cm2/V·s at room temperature. X-ray diffraction measurements indicate that HT implantation prevents the formation of other Ga2O3 phases and results in reduced structural defects and lattice damage. These results are highly encouraging for achieving ultra-low resistance heavily doped Ga2O3 layers using ion implantation. 
    more » « less
  5. An in situ metal-organic chemical vapor phase epitaxy is used to grow a complete AlGaN/GaN metal oxide semiconductor heterojunction field effect transistor (MOSHFET) structure, gated by a gallium oxide (Ga2O3) layer; we observed reduction in the interfacial trap density compared to its version wherein the Ga2O3 was grown ex situ, after breaking the vacuum, all else being the same. A remarkable decrease in the interfacial charge density for in situ MOSHFET structures in the range of 70%–88% for 10–30 nm oxide layer thickness and improvements in other electrical parameters required for high-performing devices were observed. 
    more » « less