skip to main content


This content will become publicly available on July 1, 2024

Title: Distributionally Robust Fair Transit Resource Allocation During a Pandemic

This paper studies the distributionally robust fair transit resource allocation model (DrFRAM) under the Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show that the proposed DrFRAM is highly nonconvex and nonlinear, and it is NP-hard in general. Fortunately, we show that DrFRAM can be reformulated as a mixed integer linear programming (MILP) by leveraging the equivalent representation of distributionally robust optimization and monotonicity properties, binarizing integer variables, and linearizing nonconvex terms. To improve the proposed MILP formulation, we derive stronger ones and develop valid inequalities by exploiting the model structures. Additionally, we develop scenario decomposition methods using different MILP formulations to solve the scenario subproblems and introduce a simple yet effective no one left-based approximation algorithm with a provable approximation guarantee to solve the model to near optimality. Finally, we numerically demonstrate the effectiveness of the proposed approaches and apply them to real-world data provided by the Blacksburg Transit.

History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics.

Funding: This work was supported by the Division of Computing and Communication Foundations [Grant 2153607] and the Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046426].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1159 .

 
more » « less
Award ID(s):
2046426 2246414
NSF-PAR ID:
10324122
Author(s) / Creator(s):
; ;
Publisher / Repository:
INFORMS
Date Published:
Journal Name:
Transportation Science
Volume:
57
Issue:
4
ISSN:
0041-1655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the most informative principal submatrix of a prespecified size from a covariance matrix. By investigating its Lagrangian dual and primal characterization, we derive a novel convex integer program for MESP and show that its continuous relaxation yields a near-optimal solution. The results motivate us to develop a sampling algorithm and derive its approximation bound for MESP, which improves the best known bound in literature. We then provide an efficient deterministic implementation of the sampling algorithm with the same approximation bound. Besides, we investigate the widely used local search algorithm and prove its first known approximation bound for MESP. The proof techniques further inspire for us an efficient implementation of the local search algorithm. Our numerical experiments demonstrate that these approximation algorithms can efficiently solve medium-size and large-scale instances to near optimality. Finally, we extend the analyses to the A-optimal MESP, for which the objective is to minimize the trace of the inverse of the selected principal submatrix. Funding: This work was supported by the National Science Foundation Division of Information and Intelligent Systems [Grant 2246417] and Division of Civil, Mechanical and Manufacturing Innovation [Grant 2246414]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2023.2488 . 
    more » « less
  2. null (Ed.)
    The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services. 
    more » « less
  3. We study the D-optimal Data Fusion (DDF) problem, which aims to select new data points, given an existing Fisher information matrix, so as to maximize the logarithm of the determinant of the overall Fisher information matrix. We show that the DDF problem is NP-hard and has no constant-factor polynomial-time approximation algorithm unless P = NP. Therefore, to solve the DDF problem effectively, we propose two convex integer-programming formulations and investigate their corresponding complementary and Lagrangian-dual problems. Leveraging the concavity of the objective functions in the two proposed convex integer-programming formulations, we design an exact algorithm, aimed at solving the DDF problem to optimality. We further derive a family of submodular valid inequalities and optimality cuts, which can significantly enhance the algorithm performance. We also develop scalable randomized-sampling and local-search algorithms with provable performance guarantees. Finally, we test our algorithms using real-world data on the new phasor-measurement-units placement problem for modern power grids, considering the existing conventional sensors. Our numerical study demonstrates the efficiency of our exact algorithm and the scalability and high-quality outputs of our approximation algorithms. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: Y. Li and W. Xie were supported in part by Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046414] and Division of Computing and Communication Foundations [Grant 2246417]. J. Lee was supported in part by Air Force Office of Scientific Research [Grants FA9550-19-1-0175 and FA9550-22-1-0172]. M. Fampa was supported in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grants 305444/2019-0 and 434683/2018-3]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.0235 . 
    more » « less
  4. In a chance constrained program (CCP), decision makers seek the best decision whose probability of violating the uncertainty constraints is within the prespecified risk level. As a CCP is often nonconvex and is difficult to solve to optimality, much effort has been devoted to developing convex inner approximations for a CCP, among which the conditional value-at-risk (CVaR) has been known to be the best for more than a decade. This paper studies and generalizes the ALSO-X, originally proposed by Ahmed, Luedtke, SOng, and Xie in 2017 , for solving a CCP. We first show that the ALSO-X resembles a bilevel optimization, where the upper-level problem is to find the best objective function value and enforce the feasibility of a CCP for a given decision from the lower-level problem, and the lower-level problem is to minimize the expectation of constraint violations subject to the upper bound of the objective function value provided by the upper-level problem. This interpretation motivates us to prove that when uncertain constraints are convex in the decision variables, ALSO-X always outperforms the CVaR approximation. We further show (i) sufficient conditions under which ALSO-X can recover an optimal solution to a CCP; (ii) an equivalent bilinear programming formulation of a CCP, inspiring us to enhance ALSO-X with a convergent alternating minimization method (ALSO-X+); and (iii) an extension of ALSO-X and ALSO-X+ to distributionally robust chance constrained programs (DRCCPs) under the ∞−Wasserstein ambiguity set. Our numerical study demonstrates the effectiveness of the proposed methods. 
    more » « less
  5. We propose an algorithm to solve convex and concave fractional programs and their stochastic counterparts in a common framework. Our approach is based on a novel reformulation that involves differences of square terms in the constraints, and subsequent employment of piecewise-linear approximations of the concave terms. Using the branch-and-bound (B\&B) framework, our algorithm adaptively refines the piecewise-linear approximations and iteratively solves convex approximation problems. The convergence analysis provides a bound on the optimality gap as a function of approximation errors. Based on this bound, we prove that the proposed B\&B algorithm terminates in a finite number of iterations and the worst-case bound to obtain an $\epsilon$-optimal solution reciprocally depends on the square root of $\epsilon$. Numerical experiments on Cobb-Douglas production efficiency and equitable resource allocation problems support that the algorithm efficiently finds a highly accurate solution while significantly outperforming the benchmark algorithms for all the small size problem instances solved. A modified branching strategy that takes the advantage of non-linearity in convex functions further improves the performance. Results are also discussed when solving a dual reformulation and using a cutting surface algorithm to solve distributionally robust counterpart of the Cobb-Douglas example models. 
    more » « less