Nonconvex quadratically constrained programs (QCPs) are generally NP-hard and challenging problems. In this paper, we propose two novel mixed-integer linear programming (MILP) approximations for a nonconvex QCP. Our method begins by utilizing an eigenvalue-based decomposition to express the nonconvex quadratic function as the difference of two convex functions. We then introduce an additional variable to partition each nonconvex constraint into a second-order cone (SOC) constraint and the complement of an SOC constraint. We employ two polyhedral approximation approaches to approximate the SOC constraint. The complement of an SOC constraint is approximated using a combination of linear and complementarity constraints. As a result, we approximate the nonconvex QCP with two linear programs with complementarity constraints (LPCCs). More importantly, we prove that the optimal values of the LPCCs asymptotically converge to that of the original nonconvex QCP. By proving the boundedness of the LPCCs, we further reformulate the LPCCs as MILPs. We demonstrate the effectiveness of our approaches via numerical experiments by applying our proposed approximations to randomly generated instances and two application problems: the joint decision and estimation problem and the two-trust-region subproblem. The numerical results show significant advantages of our approaches in terms of solution quality and computational time compared with existing benchmark approaches. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Funding: K. Pan was supported in part by the Research Grants Council of Hong Kong [Grant 15503723]. J. Cheng and B. Yang were supported in part by the Office of Naval Research [Grant N00014-20-1-2154]. J. Cheng was supported in part by the National Science Foundation [Grant ECCS-2404412]. B. Yang was supported in part by the Air Force Office of Scientific Research [Grant FA9550-23-1-0508]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0719 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0719 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
more »
« less
Distributionally Robust Fair Transit Resource Allocation During a Pandemic
This paper studies the distributionally robust fair transit resource allocation model (DrFRAM) under the Wasserstein ambiguity set to optimize the public transit resource allocation during a pandemic. We show that the proposed DrFRAM is highly nonconvex and nonlinear, and it is NP-hard in general. Fortunately, we show that DrFRAM can be reformulated as a mixed integer linear programming (MILP) by leveraging the equivalent representation of distributionally robust optimization and monotonicity properties, binarizing integer variables, and linearizing nonconvex terms. To improve the proposed MILP formulation, we derive stronger ones and develop valid inequalities by exploiting the model structures. Additionally, we develop scenario decomposition methods using different MILP formulations to solve the scenario subproblems and introduce a simple yet effective no one left-based approximation algorithm with a provable approximation guarantee to solve the model to near optimality. Finally, we numerically demonstrate the effectiveness of the proposed approaches and apply them to real-world data provided by the Blacksburg Transit. History: This paper has been accepted for the Transportation Science Special Issue on Emerging Topics in Transportation Science and Logistics. Funding: This work was supported by the Division of Computing and Communication Foundations [Grant 2153607] and the Division of Civil, Mechanical and Manufacturing Innovation [Grant 2046426]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1159 .
more »
« less
- PAR ID:
- 10324122
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Transportation Science
- Volume:
- 57
- Issue:
- 4
- ISSN:
- 0041-1655
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider a risk-averse stochastic capacity planning problem under uncertain demand in each period. Using a scenario tree representation of the uncertainty, we formulate a multistage stochastic integer program to adjust the capacity expansion plan dynamically as more information on the uncertainty is revealed. Specifically, in each stage, a decision maker optimizes capacity acquisition and resource allocation to minimize certain risk measures of maintenance and operational cost. We compare it with a two-stage approach that determines the capacity acquisition for all the periods up front. Using expected conditional risk measures, we derive a tight lower bound and an upper bound for the gaps between the optimal objective values of risk-averse multistage models and their two-stage counterparts. Based on these derived bounds, we present general guidelines on when to solve risk-averse two-stage or multistage models. Furthermore, we propose approximation algorithms to solve the two models more efficiently, which are asymptotically optimal under an expanding market assumption. We conduct numerical studies using randomly generated and real-world instances with diverse sizes, to demonstrate the tightness of the analytical bounds and efficacy of the approximation algorithms. We find that the gaps between risk-averse multistage and two-stage models increase as the variability of the uncertain parameters increases and decrease as the decision maker becomes more risk averse. Moreover, a stagewise-dependent scenario tree attains much higher gaps than a stagewise-independent counterpart, whereas the latter produces tighter analytical bounds. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work of Dr. X. Yu was partially supported by the U.S. National Science Foundation Division of Information and Intelligent Systems [Grant 2331782]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0396 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0396 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
-
Abstract Urban air mobility (UAM) is an emerging air transportation mode to alleviate the ground traffic burden and achieve zero direct aviation emissions. Due to the potential economic scaling effects, the UAM traffic flow is expected to increase dramatically once implemented, and its market can be substantially large. To be prepared for the era of UAM, we study the fair and risk‐averse urban air mobility resource allocation model (FairUAM) under passenger demand and airspace capacity uncertainties for fair, safe, and efficient aircraft operations. FairUAM is a two‐stage model, where the first stage is the aircraft resource allocation, and the second stage is to fairly and efficiently assign the ground and airspace delays to each aircraft provided the realization of random airspace capacities and passenger demand. We show that FairUAM is NP‐hard even when there is no delay assignment decision or no aircraft allocation decision. Thus, we recast FairUAM as a mixed‐integer linear program (MILP) and explore model properties and strengthen the model formulation by developing multiple families of valid inequalities. The stronger formulation allows us to develop a customized exact decomposition algorithm with both benders and L‐shaped cuts, which significantly outperforms the off‐the‐shelf solvers. Finally, we numerically demonstrate the effectiveness of the proposed method and draw managerial insights when applying FairUAM to a real‐world network.more » « less
-
null (Ed.)The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services.more » « less
-
This paper studies a classic maximum entropy sampling problem (MESP), which aims to select the most informative principal submatrix of a prespecified size from a covariance matrix. By investigating its Lagrangian dual and primal characterization, we derive a novel convex integer program for MESP and show that its continuous relaxation yields a near-optimal solution. The results motivate us to develop a sampling algorithm and derive its approximation bound for MESP, which improves the best known bound in literature. We then provide an efficient deterministic implementation of the sampling algorithm with the same approximation bound. Besides, we investigate the widely used local search algorithm and prove its first known approximation bound for MESP. The proof techniques further inspire for us an efficient implementation of the local search algorithm. Our numerical experiments demonstrate that these approximation algorithms can efficiently solve medium-size and large-scale instances to near optimality. Finally, we extend the analyses to the A-optimal MESP, for which the objective is to minimize the trace of the inverse of the selected principal submatrix. Funding: This work was supported by the National Science Foundation Division of Information and Intelligent Systems [Grant 2246417] and Division of Civil, Mechanical and Manufacturing Innovation [Grant 2246414]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2023.2488 .more » « less
An official website of the United States government

