skip to main content


Title: Defect Evolution in Tensile Loading of 316L Processed by Laser Powder Bed Fusion
Background Porosity and other defects resultant by additive manufacturing processes are well-known to affect mechanical properties. However, there remains limited understanding regarding how the internal defect structure influences the evolution of the local strain field, as experimental investigations have not presented direct measurements of the evolving internal strain field in the presence of defects. Objective Interrupted in-situ tensile tests in a lab-based X-ray computed tomography machine were used to investigate the evolution of the strain field around internal defects. The evolution of the internal strain field facilitated examination of the role of specific defects in the macroscopic deformation of additively manufactured tensile coupons. Methods Samples were produced in 316L stainless steel by laser powder bed fusion. An in situ loading device was utilized to subject the samples to tensile failure within a tomographic scanning environment. Digital volume correlation was utilized to directly determine local strain levels within the additively manufactured components in the vicinity of porosity defects. Results Effects of porosity on strain localization and eventual failure of the samples were evaluated. Characteristics of the porosity distribution, including presence of porosity at the surface or near-surface of components, as well as the proximity of pores to each other were found to influence the evolution of failure. Early onset of failure was found to be associated with the availability of neighboring porosity that allowed for rapid progression of the fracture path. Conclusions The direct measurements of strain field evolution in the present study established understanding regarding how internal defect structure characteristics influence the evolution of the local strain field for additively manufactured components. This high fidelity characterization and the associated phenomenological observations have bearing for supporting validation of numerical modeling frameworks for describing failure in these materials.  more » « less
Award ID(s):
1825640 1646013 1631803
NSF-PAR ID:
10327325
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Experimental Mechanics
ISSN:
0014-4851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates the mechanical behavior of additively manufactured (AM) 17-4 PH (AISI 630) stainless steels and compares their behavior to traditionally produced wrought counterparts. The goal of this study is to understand the key parameters influencing AM 17-4 PH steel fatigue life under ULCF conditions and to develop simple predictive models for fatigue-life estimation in AM 17-4 steel components. In this study, both AM and traditionally produced (wrought) material samples are fatigue tested under fully reversed (R = −1) strain controlled (2–4% strain) loading and characterized using micro-hardness, x-ray diffraction, and fractography methods. Results indicate decreased fatigue life for AM specimens as compared to wrought 17-4 PH specimens due to fabrication porosity and un-melted particle defect regions which provide a mechanism for internal fracture initiation. Heat treatment processes performed in this work, to both the AM and wrought specimens, had no observable effect on ULCF behavior. Result comparisons with an existing fatigue prediction model (the Coffin–Manson universal slopes equation) demonstrated consistent over-prediction of fatigue life at applied strain amplitudes greater than 3%, likely due to inherent AM fabrication defects. An alternative empirical ULCF capacity equation is proposed herein to aid future fatigue estimations in AM 17-4 PH stainless steel components. 
    more » « less
  2. The ability of Additive Manufacturing (AM) processes to ensure delivery of high quality metal-based components is somewhat limited by insufficient inspection capabilities. The inspection of AM parts presents particular challenges due to the design flexibility that the fabrication method affords. The nondestructive evaluation (NDE) methods employed need to be selected based on the material properties, type of possible defects, and geometry of the parts. Electromagnetic method, in particular Eddy Current (EC), is proposed for the inspections. This evaluation of EC inspection considers surface and near-surface defects in a stainless steel (SS) 17 4 PH additively manufactured sample and a SS 17 4 PH annealed plates manufactured traditionally (reference sample). The surfaces of the samples were polished using 1 micron polishing Alumina grit to achieve a mirror like surface finish. 1.02 mm (0.04”), 0.508 mm (0.02”) and 0.203 mm (0.008”) deep Electronic Discharge Machining (EDM) notches were created on the polished surface of the samples. Lift off and defect responses for both additive and reference samples were obtained using a VMEC-1 commercial instrument and a 500 kHz absolute probe. The inspection results as well as conductivity assessments for the AM sample in terms of the impedance plane signature were compared to response of similar features in the reference sample. Direct measurement of electromagnetic properties of the AM samples is required for precise inspection of the parts. Results show that quantitative comparison of the AM and traditional materials help for the development of EC technology for inspection of additively manufactured metal parts. 
    more » « less
  3. Abstract

    The present work utilizes Orientation Imaging Microscopy and Finite Element Modelling to analyse microstructure evolution in grains near defects during plane strain indentation of direct metal laser sintered Inconel 718. Defects are inevitably produced during printing of metals and they degrade the mechanical behaviour of parent components. Understanding microstructure evolution of grains present near defects can help create better predictive models of mechanical behaviour of components resulting from additive manufacturing. In this work, an ex-situ study of microstructure evolution during plane strain indentation of DMLS Inconel 718 specimens is performed. Regions that lie near volumetric porosity defects were studied. Grain Orientation Spread was utilized as a metric to quantify intra-granular deformation. It was seen that microstructure evolution of grains near defects is enhanced due to strain concentrations whereby they exhibit larger orientation spread after plastic deformation. Finite Element Analysis was used to simulate the plane strain indentation test on the specimen in which, porosity defects and roughness textures similar to those seen in the as-received specimen were programmed using the python scripting interface of Abaqus. Results from finite element analysis were compared with insights from microstructure analysis to describe evolution of microstructure during deformation near defects.

     
    more » « less
  4. The effects of build orientation on the fatigue behavior of additively-manufactured Ti-6Al- 4V using a Laser-Based Power Bed Fusion (L-PBF) process is investigated. Ti-6Al-4V rods were manufactured in vertical, horizontal, and 45º angle orientations. The specimens were then machined and polished along the gage section in order to reduce the effects of surface roughness on fatigue behavior. Fully-reversed strain-controlled uniaxial fatigue tests were performed at various strain amplitudes with frequencies adjusted to maintain an average constant strain rate throughout testing. Results indicate slight variation in fatigue behavior of specimens fabricated in the different orientations investigated. Fractography was conducted using scanning electron microscopy after mechanical testing in order to investigate the crack initiation sites and determine the defect responsible for the failure. The experimental program utilized and results obtained will be presented and discussed. 
    more » « less
  5. The aim of this study is to experimentally investigate the fatigue behavior of additively manufactured (AM) NiTi (i.e. Nitinol) specimens and compare the results to the wrought material. Additive manufacturing is a technique in which components are fabricated in a layer-by-layer additive process using a sliced CAD model based on the desired geometry. NiTi rods were fabricated in this study using Laser Engineered Net Shaping (LENS), a Direct Laser Deposition (DLD) AM technique. Due to the high plateau stress of the as-fabricated NiTi, all the AM specimens were heat-treated to reduce their plateau stress, close to the one for the wrought material. Two different heat treatment processes, resulting in different stress plateaus, were employed to be able to compare the results in stress- and strain-based fatigue analysis. Straincontrolled constant amplitude pulsating fatigue experiments were conducted on heat-treated AM NiTi specimens at room temperature (~24°C) to investigate their cyclic deformation and fatigue behavior. Fatigue lives of AM NiTi specimens were observed to be shorter than wrought material specifically in the high cycle fatigue regime. Fractography of the fracture surface of fatigue specimens using Scanning Electron Microscopy (SEM) revealed the presence of microstructural defects such as voids, resulting from entrapped gas or lack of fusion and serving as crack initiation sites, to be the main reason for the shorter fatigue lives of AM NiTi specimens. However, the maximum stress level found to be the most influential factor in the fatigue behavior of superelastic NiTi. 
    more » « less