Abstract High nighttime urban air temperatures increase health risks and economic vulnerability of people globally. While recent studies have highlighted nighttime heat mitigation effects of urban vegetation, the magnitude and variability of vegetation-derived urban nighttime cooling differs greatly among cities. We hypothesize that urban vegetation-derived nighttime air cooling is driven by vegetation density whose effect is regulated by aridity through increasing transpiration. We test this hypothesis by deploying microclimate sensors across eight United States cities and investigating relationships of nighttime air temperature and urban vegetation throughout a summer season. Urban vegetation decreased nighttime air temperature in all cities. Vegetation cooling magnitudes increased as a function of aridity, resulting in the lowest cooling magnitude of 1.4 °C in the most humid city, Miami, FL, and 5.6 °C in the most arid city, Las Vegas, NV. Consistent with the differences among cities, the cooling effect increased during heat waves in all cities. For cities that experience a summer monsoon, Phoenix and Tucson, AZ, the cooling magnitude was larger during the more arid pre-monsoon season than during the more humid monsoon period. Our results place the large differences among previous measurements of vegetation nighttime urban cooling into a coherent physiological framework dependent on plant transpiration. This work informs urban heat risk planning by providing a framework for using urban vegetation as an environmental justice tool and can help identify where and when urban vegetation has the largest effect on mitigating nighttime temperatures.
more »
« less
A Satellite-Based Model for Estimating Latent Heat Flux From Urban Vegetation
The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. Urban greenspace mitigates high temperatures through evapotranspiration and shading; however, quantification of vegetative cooling potential in cities is often limited to simple remote sensing greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit, high-resolution model of urban latent heat flux from vegetation. The model iterates through three core equations that consider urban climatological and physiological characteristics, producing estimates of latent heat flux at 30-m spatial resolution and hourly temporal resolution. We find strong agreement between field observations and model estimates of latent heat flux across a range of ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial heterogeneity of vegetation cooling benefits across the complex landscape of cities at an adequate resolution to inform policies addressing the effects of extreme heat events.
more »
« less
- PAR ID:
- 10329690
- Date Published:
- Journal Name:
- Frontiers in Ecology and Evolution
- Volume:
- 9
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We compare high‐resolution land‐surface temperature (LST) estimates from the GOES‐16/17 (GOES) satellites to ERA‐5 Land (ERA‐5) reanalysis data across nine large US cities. We quantify the offset and find that ERA‐5 generally overestimates LST compared to GOES by 1.63°C. However, this overestimation is less pronounced in urban areas, underscoring the limitations of ERA‐5 in capturing the LST gradient between urban and non‐urban areas. We then examine three quantities: Surface Urban Heat Island Intensity (SUHII), extreme LST events, and LST exposure by population. We find that ERA‐5 does not accurately represent the diurnal variation and magnitude of SUHII in GOES. Furthermore, while ERA‐5 was on average too warm, ERA‐5 underestimates extreme heat by an average of 2.40°C. Our analysis reveals higher population exposure to high LST in the GOES data set across the cities studied. This discrepancy is especially pronounced when estimating the population fraction that are most exposed to heat.more » « less
-
With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities.more » « less
-
Abstract Many cities are experiencing increases in extreme heat because of global temperature rise combined with the urban heat island effect. The heterogeneity of urban morphology also leads to fine-scale variability in potential for heat exposure. Yet, how this rise in temperature and local variability together impacts urban residents differently at exposure-relevant scales is still not clear. Here we map the Universal Thermal Climate Index, a more complete indicator of human heat stress at an unprecedentedly fine spatial resolution (1 m), for 14 major cities in the United States using urban microclimate modeling. We examined the different heat exposure levels across different socioeconomic and racial/ethnic groups in these cities, finding that income level is most consistently associated with heat stress. We further conducted scenario simulations for a hypothetical 1 °C increase of air temperature in all cities. Results show that a 1 °C increase would have a substantial impact on human heat stress, with impacts that differ across cities. The results of this study can help us better evaluate the impact of extreme heat on urban residents at decision-relevant scales.more » « less
-
Abstract Here we use remotely sensed land surface temperature measurements to explore the distribution of the United States’ urban heating burden, both at high resolution (within cities or counties) and at scale (across the whole contiguous United States). While a rich literature has documented neighborhood‐level disparities in urban heat exposures in individual cities, data constraints have precluded comparisons across locations. Here, drawing on urban temperature anomalies during extreme summer surface temperature events from all 1,056 US counties with more than 10 developed census tracts, we find that the poorest tracts (and those with lowest average education levels) within a county are significantly hotter than the richest (and more educated) neighborhoods for 76% of these counties (54% for education); we also find that neighborhoods with higher Black, Hispanic, and Asian population shares are hotter than the more White, non‐Hispanic areas in each county. This holds in counties with both large and small spreads in these population shares, and for 71% of all counties the significant racial urban heat disparities persist even when adjusting for income. Although individual locations have different histories that have contributed to race‐ and class‐based geographies, we find that the physical features of the urban environments driving these surface heat exposure gradients are fairly uniform across the country. Systematically, the disproportionate heat surface exposures faced by minority communities are due to more built‐up neighborhoods, less vegetation, and—to a lesser extent—higher population density.more » « less
An official website of the United States government

