Abstract The spatial distribution and kinematics of intracontinental deformation provide insight into the dominant mode of continental tectonics: rigid-body motion versus continuum flow. The discrete San Andreas fault defines the western North America plate boundary, but transtensional deformation is distributed hundreds of kilometers eastward across the Walker Lane–Basin and Range provinces. In particular, distributed Basin and Range extension has been encroaching westward onto the relatively stable Sierra Nevada block since the Miocene, but the timing and style of distributed deformation overprinting the stable Sierra Nevada crust remains poorly resolved. Here we bracket the timing, magnitude, and kinematics of overprinting Walker Lane and Basin and Range deformation in the Pine Nut Mountains, Nevada (USA), which are the westernmost structural and topographic expression of the Basin and Range, with new geologic mapping and 40Ar/39Ar geochronology. Structural mapping suggests that north-striking normal faults developed during the initiation of Basin and Range extension and were later reactivated as northeast-striking oblique-slip faults following the onset of Walker Lane transtensional deformation. Conformable volcanic and sedimentary rocks, with new ages spanning ca. 14.2 Ma to 6.8 Ma, were tilted 30°–36° northwest by east-dipping normal faults. This relationship demonstrates that dip-slip deformation initiated after ca. 6.8 Ma. Amore »
Seismic and Geodetic Analysis of Rupture Characteristics of the 2020 Mw 6.5 Monte Cristo Range, Nevada, Earthquake
ABSTRACT The largest earthquake since 1954 to strike the state of Nevada, United States, ruptured on 15 May 2020 along the Monte Cristo range of west-central Nevada. The Mw 6.5 event involved predominantly left-lateral strike-slip faulting with minor normal components on three aligned east–west-trending faults that vary in strike by 23°. The kinematic rupture process is determined by joint inversion of Global Navigation Satellite Systems displacements, Interferometric Synthetic Aperture Radar (InSAR) data, regional strong motions, and teleseismic P and SH waves, with the three-fault geometry being constrained by InSAR surface deformation observations, surface ruptures, and relocated aftershock distributions. The average rupture velocity is 1.5 km/s, with a peak slip of ∼1.6 m and a ∼20 s rupture duration. The seismic moment is 6.9×1018 N·m. Complex surface deformation is observed near the fault junction, with a deep near-vertical fault and a southeast-dipping fault at shallow depth on the western segment, along which normal-faulting aftershocks are observed. There is a shallow slip deficit in the Nevada ruptures, probably due to the immature fault system. The causative faults had not been previously identified and are located near the transition from the Walker Lane belt to the Basin and Range province. The east–west geometry of the system is consistent more »
- Award ID(s):
- 1802364
- Publication Date:
- NSF-PAR ID:
- 10330529
- Journal Name:
- Bulletin of the Seismological Society of America
- Volume:
- 111
- Issue:
- 6
- Page Range or eLocation-ID:
- 3226 to 3236
- ISSN:
- 0037-1106
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT New paleoseismic trenching indicates late Quaternary oblique right-lateral slip on the Leech River fault, southern Vancouver Island, Canada, and constrains permanent forearc deformation in northern Cascadia. A south-to-north reduction in northward Global Navigation Satellite System velocities and seismicity across the Olympic Mountains, Strait of Juan de Fuca (JDF), and the southern Strait of Georgia, has been used as evidence for permanent north–south crustal shortening via thrust faulting between a northward migrating southern forearc and rigid northern backstop in southwestern Canada. However, previous paleoseismic studies indicating late Quaternary oblique right-lateral slip on west-northwest-striking forearc faults north of the Olympic Mountains and in the southern Strait of Georgia are more consistent with forearc deformation models that invoke oroclinal bending and(or) westward extrusion of the Olympic Mountains. To help evaluate strain further north across the Strait of JDF, we present the results from two new paleoseismic trenches excavated across the Leech River fault. In the easternmost Good Hope trench, we document a vertical fault zone and a broad anticline deforming glacial till. Comparison of till clast orientations in faulted and undeformed glacial till shows evidence for postdeposition faulted till clast rotation, indicating strike-slip shear. The orientation of opening mode fissuring during surfacemore »
-
SUMMARY The Eastern Mediterranean is the most seismically active region in Europe due to the complex interactions of the Arabian, African, and Eurasian tectonic plates. Deformation is achieved by faulting in the brittle crust, distributed flow in the viscoelastic lower-crust and mantle, and Hellenic subduction, but the long-term partitioning of these mechanisms is still unknown. We exploit an extensive suite of geodetic observations to build a kinematic model connecting strike-slip deformation, extension, subduction, and shear localization across Anatolia and the Aegean Sea by mapping the distribution of slip and strain accumulation on major active geological structures. We find that tectonic escape is facilitated by a plate-boundary-like, trans-lithospheric shear zone extending from the Gulf of Evia to the Turkish-Iranian Plateau that underlies the surface trace of the North Anatolian Fault. Additional deformation in Anatolia is taken up by a series of smaller-scale conjugate shear zones that reach the upper mantle, the largest of which is located beneath the East Anatolian Fault. Rapid north–south extension in the western part of the system, driven primarily by Hellenic Trench retreat, is accommodated by rotation and broadening of the North Anatolian mantle shear zone from the Sea of Marmara across the north Aegean Sea, andmore »
-
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: 1. Retrieval of a temporary observatory at Site C0010 that began monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor in November 2010. 2. Deployment of a complex long-term borehole monitoring system (LTBMS) designed to be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition. The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a planned future installation near the trench, the Site C0010 observatorymore »
-
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: (1) retrieval of a temporary observatory at Site C0010 that has been monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor since November 2010 and (2) deployment of a complex long-term borehole monitoring system (LTBMS) that will be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition (anticipated June 2016). The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a possible future installation near themore »